
End Term Report 
Karvy Mohnot and Raj Shah 

GitHub Repo: https://github.com/RajShah-1/db-optimizers/tree/main/CardEst/ 

Introduction 

Query optimization is the process of 
selecting the most efficient 
query-evaluation plan from among the 
many strategies usually possible for 
processing a given query. The system is 
expected to construct a plan that 
minimizes the cost of query evaluation, 
where cost is typically measured in terms 
of I/O, CPU time, or memory usage. 

A key component of this process is 
cardinality estimation—predicting the 
number of tuples that will be produced at 
various stages of query execution. These 
estimates directly influence the choice of 
access paths, join orders, and algorithms. 
Since the difference in cost between a 
good strategy and a bad one can be 
several orders of magnitude, accurate 
cardinality estimation becomes critical to 
avoid suboptimal plans. Therefore, it is 
worthwhile for the optimizer to invest effort 
into both selecting a good plan and 
producing reliable cardinality estimates, 
even if the query is executed only once. 

The project's goal was to thoroughly 
understand, implement, and evaluate 
traditional CardEst models, analyze their 
limitations, and explore advanced 
techniques, including hybrid approaches 
guided by machine learning, to improve 
estimation accuracy. Our work involved 
establishing a robust benchmarking 
environment using the JOB benchmark on 
the IMDB dataset, implementing core 
traditional estimators (histogram-based 
and sample-based), analyzing their 
performance using the Q-error metric, and 
investigating state-of-the-art methods for 
accurate join cardinality estimation. A key 
aspect of our recent efforts has been the 
development of a feedback-driven 
refinement loop aimed at improving 

traditional estimates using insights gained 
from performance analysis.  

Background & Related Work 

Traditional cardinality estimation 
techniques largely rely on pre-computed 
statistics: 

Histogram-Based Methods 
These techniques summarize the 
distribution of values in columns using 
histograms, estimating selectivity based 
on how predicates align with histogram 
buckets. They are widely used due to their 
efficiency but suffer from inaccuracies 
when dealing with correlated data or 
complex predicates. 

Sampling-Based Methods 
These methods estimate cardinalities by 
running queries on a small sample of the 
data and scaling the results. While they 
can capture some data correlations, their 
accuracy is sensitive to sample size and 
strategy, and variance can be high for 
complex queries with low selectivity. 

HyperLogLog-Based Methods 
These probabilistic techniques estimate 
the cardinality of a multiset (i.e., the 
number of distinct values) using fixed-size 
sketches. HyperLogLog (HLL) is 
particularly space-efficient and scalable, 
making it suitable for large datasets and 
streaming scenarios. It provides fast 
approximate distinct counts with a small 
memory footprint and predictable error 
bounds. However, HLL focuses on 
estimating distinct counts rather than full 
result cardinalities, and its integration into 
general-purpose query optimizers requires 
careful handling, especially when 
combining with filters or joins. 

Limitations of Traditional Methods 
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The biggest limitation of traditional 
estimators is their reliance on simplifying 
assumptions. They assume data 
independence between columns and 
uniform distribution within histogram bins. 
These assumptions often lead to 
substantial errors, especially in estimating 
the cardinality of multi-join queries, which 
is a known bottleneck for optimizer 
performance. 

Literature Review of Modern 
Approaches 
Recent advances in cardinality estimation 
have increasingly leveraged machine 
learning to overcome the limitations of 
traditional statistical techniques. Deep 
learning models, such as those proposed 
in Fauce and Deep Learning Models for 
Selectivity Estimation of Multi-Attribute 
Queries, aim to capture complex attribute 
correlations across relations. Fauce 
introduces a deep ensemble model that 
estimates not only cardinality but also 
predictive uncertainty, which helps in 
reducing the optimizer’s overconfidence in 
inaccurate predictions. FactorJoin 
presents a hybrid framework that 
constructs factor graphs from traditional 
single-table statistics to estimate join 
cardinalities more effectively, offering a 
balance between classical and learned 
techniques. However, as highlighted in 
PACE, learned estimators are vulnerable 
to adversarial poisoning attacks that can 
significantly degrade performance, raising 
concerns about robustness in deployment. 
Additionally, Is Your Learned Query 
Optimizer Behaving As You Expect? 
critiques the current evaluation practices 
of learned query optimizers and 
emphasizes the need for standardized, 
rigorous benchmarking, noting that 
traditional optimizers can still outperform 
learned ones under certain conditions. 
Together, these works reflect an evolving 
landscape where learning-based 
estimators offer promising improvements 
in accuracy and generalization, but also 
introduce new challenges in robustness, 
interpretability, and integration. 

Project Objectives 

This project aimed to explore and improve 
traditional cardinality estimation 
techniques. The initial focus was on 
understanding core CardEst principles 
and implementing standard estimators 
such as histograms and sampling-based 
methods. These were evaluated using 
benchmark datasets, and the resulting 
estimation errors were analyzed to identify 
key weaknesses. Based on these findings, 
the project investigated advanced 
traditional and hybrid approaches, and 
began designing a feedback-based 
refinement mechanism to improve 
estimator accuracy over time. 

System Design 

To support the development and 
evaluation of cardinality estimators, we 
built a custom Python framework 
(db-optimizers/CardEst/). This 
framework provides support for schema 
definition, data loading (using the IMDB 
dataset), query parsing, statistical 
structure creation, modular estimator 
integration, and benchmarking with 
Q-error metrics. Instrumentation was 
added to monitor and log estimation errors 
at various stages of query execution. 
Alongside implementing the estimators 
themselves, significant effort went into 
building the surrounding infrastructure for 
robust benchmarking and error analysis. 

Implementation Details 

Traditional Estimators 

We implemented two foundational 
cardinality estimation techniques: 

●​ Histogram-Based Estimator: Raj 
developed the core logic for 
constructing histograms and 
estimating predicate selectivity based 
on bucket alignment. 

●​ Sample-Based Estimator: Karvy 
implemented a sampling-based 
estimator, incorporating various 



sampling strategies and scaling 
mechanisms to approximate result 
cardinalities. 

Joint Improvement Efforts 

After the initial implementation, our efforts 
shifted toward improving estimation 
accuracy and diagnosing failure modes. 

●​ Q-error:​
Q-error is a common metric used in 
cardinality estimation to quantify the 
inaccuracy of estimates. It measures 
the multiplicative error between the 
estimated cardinality (Est) and the 
actual cardinality (Act). The Q-error for 
a given query is typically defined as 
max(Est/Act, Act/Est). This metric 
provides a symmetric and 
scale-invariant way to assess the 
quality of cardinality estimators. 

●​ Benchmarking and Error Analysis: 
We integrated the JOB benchmark 
suite, comprising 70 queries over the 
IMDB dataset. Evaluation of the 
histogram-based estimator revealed a 
median Q-error of 7.964 and a 
maximum Q-error of 2498.712, with 
major inaccuracies observed in 
join-heavy queries. Instrumentation 
confirmed that underestimation in join 
selectivity was a key source of error. 

●​ Correlation Summaries: To improve 
estimation over correlated columns, we 
extended the framework to include 
correlation-aware selectivity estimation. 

●​ Advanced Techniques: We studied 
and partially incorporated several 
advanced methods, including 
HyperLogLog for distinct count 
estimation, Most Common Values 
(MCVs) for handling skew, and 
concepts from FactorJoin such as 
factor graphs and learned joint 
distributions for multi-table cardinality 
estimation. 

●​ Feedback Loop Design: A 
feedback-driven refinement mechanism 
was designed to analyze stage-level 
Q-errors from benchmark runs. The 
proposed system includes a guiding 
component—potentially ML-based in 

future iterations—that suggests 
targeted estimator refinements (e.g., 
histogram splitting on join keys) based 
on past errors. To validate the potential 
of this approach, we currently apply all 
enhancements proactively per query, 
without relying on learning-based 
feedback, thereby demonstrating its 
effectiveness while preserving 
interpretability. 

Evaluation 

The evaluation was conducted using the 
Join Order Benchmark (JOB), a standard 
suite of 70 real-world queries over the 
IMDB dataset. Estimation quality was 
measured using Q-error, a widely used 
metric defined as the maximum of the ratio 
between estimated and true cardinality. 

Initial results with the baseline 
HistogramEstimator revealed 
limitations in handling join-heavy and 
correlated queries, with a median Q-error 
of 7.964 and a maximum Q-error 
exceeding 2400. After integrating the 
feedback-based enhancements, we 
observed consistent improvements across 
all metrics. As shown in the table below, 
the feedback loop led to reductions in 
mean, median, and tail Q-errors, 
particularly improving robustness in outlier 
cases. 

Metric With 
Feedback 
Loop 

Histogram
Estimator 

median_q_error 7.371 7.964 

mean_q_error 92.430 106.598 

max_q_error 1852.115 2498.712 

90th_percentile 210.589 255.238 

95th_percentile 312.987 347.777 

99th_percentile 1123.456 1354.009 



These results demonstrate that even 
simple feedback-driven refinements, such 
as query-aware histogram splits and 
join-selectivity adjustments, can yield 
meaningful improvements. Future work 
will focus on automating the refinement 
loop and conducting broader evaluations 
across synthetic and skewed datasets. 

Challenges and Learnings 

Several challenges arose over the course 
of the project. Accurately estimating join 
cardinalities using traditional methods 
proved difficult, particularly due to 
correlated data selectivity. Developing a 
flexible and extensible benchmarking 
framework required careful design to 
support a wide range of queries, error 
metrics, and estimator configurations. 
Debugging the estimator logic, especially 
in multi-stage queries, was non-trivial, 
requiring fine-grained instrumentation and 
query tracing. 

Through these efforts, we developed a 
deeper understanding of the nuances in 
query optimization, the limitations of 
existing cardinality estimators, and the 
importance of balancing interpretability 
and accuracy in cost estimation strategies. 

Conclusion and Future Work 

This project involved the implementation 
and evaluation of traditional cardinality 
estimation models, along with a 
systematic benchmarking effort to uncover 
their strengths and limitations. Through 
empirical analysis using the JOB 
benchmark, we identified significant 
estimation errors and used these insights 
to initiate the design of a feedback-driven 
refinement mechanism. Early results 
suggest that even targeted improvements 
to traditional estimators can lead to 
meaningful gains in accuracy. 

Looking ahead, future work will focus on: 

●​ Fully integrating advanced techniques 
such as HyperLogLog and Most 

Common Values (MCV) into the 
estimator pipeline. 

●​ Exploring the use of Factor Graphs 
for modeling multi-table correlations, 
including the application of the 
feedback loop within this framework. 

●​ Completing the design and evaluation 
of a machine learning-guided 
feedback loop for adaptive 
refinement. 

●​ Conducting comprehensive 
performance comparisons against 
both classical and learned cardinality 
estimation methods. 

●​ Improving robustness against 
poisoning attacks, particularly as 
ML-based components become more 
central to estimation and plan 
selection. 

Overall, our findings suggest that 
enhancing traditional estimators with 
selective learning-based guidance offers a 
promising direction for building robust and 
interpretable cardinality estimation 
systems. 
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