
End Term Report
Karvy Mohnot and Raj Shah

GitHub Repo: https://github.com/RajShah-1/db-optimizers/tree/main/CardEst/

Introduction

Query optimization is the process of
selecting the most efficient
query-evaluation plan from among the
many strategies usually possible for
processing a given query. The system is
expected to construct a plan that
minimizes the cost of query evaluation,
where cost is typically measured in terms
of I/O, CPU time, or memory usage.

A key component of this process is
cardinality estimation—predicting the
number of tuples that will be produced at
various stages of query execution. These
estimates directly influence the choice of
access paths, join orders, and algorithms.
Since the difference in cost between a
good strategy and a bad one can be
several orders of magnitude, accurate
cardinality estimation becomes critical to
avoid suboptimal plans. Therefore, it is
worthwhile for the optimizer to invest effort
into both selecting a good plan and
producing reliable cardinality estimates,
even if the query is executed only once.

The project's goal was to thoroughly
understand, implement, and evaluate
traditional CardEst models, analyze their
limitations, and explore advanced
techniques, including hybrid approaches
guided by machine learning, to improve
estimation accuracy. Our work involved
establishing a robust benchmarking
environment using the JOB benchmark on
the IMDB dataset, implementing core
traditional estimators (histogram-based
and sample-based), analyzing their
performance using the Q-error metric, and
investigating state-of-the-art methods for
accurate join cardinality estimation. A key
aspect of our recent efforts has been the
development of a feedback-driven
refinement loop aimed at improving

traditional estimates using insights gained
from performance analysis.

Background & Related Work

Traditional cardinality estimation
techniques largely rely on pre-computed
statistics:

Histogram-Based Methods
These techniques summarize the
distribution of values in columns using
histograms, estimating selectivity based
on how predicates align with histogram
buckets. They are widely used due to their
efficiency but suffer from inaccuracies
when dealing with correlated data or
complex predicates.

Sampling-Based Methods
These methods estimate cardinalities by
running queries on a small sample of the
data and scaling the results. While they
can capture some data correlations, their
accuracy is sensitive to sample size and
strategy, and variance can be high for
complex queries with low selectivity.

HyperLogLog-Based Methods
These probabilistic techniques estimate
the cardinality of a multiset (i.e., the
number of distinct values) using fixed-size
sketches. HyperLogLog (HLL) is
particularly space-efficient and scalable,
making it suitable for large datasets and
streaming scenarios. It provides fast
approximate distinct counts with a small
memory footprint and predictable error
bounds. However, HLL focuses on
estimating distinct counts rather than full
result cardinalities, and its integration into
general-purpose query optimizers requires
careful handling, especially when
combining with filters or joins.

Limitations of Traditional Methods

https://github.com/RajShah-1/db-optimizers/tree/main/CardEst/

The biggest limitation of traditional
estimators is their reliance on simplifying
assumptions. They assume data
independence between columns and
uniform distribution within histogram bins.
These assumptions often lead to
substantial errors, especially in estimating
the cardinality of multi-join queries, which
is a known bottleneck for optimizer
performance.

Literature Review of Modern
Approaches
Recent advances in cardinality estimation
have increasingly leveraged machine
learning to overcome the limitations of
traditional statistical techniques. Deep
learning models, such as those proposed
in Fauce and Deep Learning Models for
Selectivity Estimation of Multi-Attribute
Queries, aim to capture complex attribute
correlations across relations. Fauce
introduces a deep ensemble model that
estimates not only cardinality but also
predictive uncertainty, which helps in
reducing the optimizer’s overconfidence in
inaccurate predictions. FactorJoin
presents a hybrid framework that
constructs factor graphs from traditional
single-table statistics to estimate join
cardinalities more effectively, offering a
balance between classical and learned
techniques. However, as highlighted in
PACE, learned estimators are vulnerable
to adversarial poisoning attacks that can
significantly degrade performance, raising
concerns about robustness in deployment.
Additionally, Is Your Learned Query
Optimizer Behaving As You Expect?
critiques the current evaluation practices
of learned query optimizers and
emphasizes the need for standardized,
rigorous benchmarking, noting that
traditional optimizers can still outperform
learned ones under certain conditions.
Together, these works reflect an evolving
landscape where learning-based
estimators offer promising improvements
in accuracy and generalization, but also
introduce new challenges in robustness,
interpretability, and integration.

Project Objectives

This project aimed to explore and improve
traditional cardinality estimation
techniques. The initial focus was on
understanding core CardEst principles
and implementing standard estimators
such as histograms and sampling-based
methods. These were evaluated using
benchmark datasets, and the resulting
estimation errors were analyzed to identify
key weaknesses. Based on these findings,
the project investigated advanced
traditional and hybrid approaches, and
began designing a feedback-based
refinement mechanism to improve
estimator accuracy over time.

System Design

To support the development and
evaluation of cardinality estimators, we
built a custom Python framework
(db-optimizers/CardEst/). This
framework provides support for schema
definition, data loading (using the IMDB
dataset), query parsing, statistical
structure creation, modular estimator
integration, and benchmarking with
Q-error metrics. Instrumentation was
added to monitor and log estimation errors
at various stages of query execution.
Alongside implementing the estimators
themselves, significant effort went into
building the surrounding infrastructure for
robust benchmarking and error analysis.

Implementation Details

Traditional Estimators

We implemented two foundational
cardinality estimation techniques:

●​ Histogram-Based Estimator: Raj
developed the core logic for
constructing histograms and
estimating predicate selectivity based
on bucket alignment.

●​ Sample-Based Estimator: Karvy
implemented a sampling-based
estimator, incorporating various

sampling strategies and scaling
mechanisms to approximate result
cardinalities.

Joint Improvement Efforts

After the initial implementation, our efforts
shifted toward improving estimation
accuracy and diagnosing failure modes.

●​ Q-error:​
Q-error is a common metric used in
cardinality estimation to quantify the
inaccuracy of estimates. It measures
the multiplicative error between the
estimated cardinality (Est) and the
actual cardinality (Act). The Q-error for
a given query is typically defined as
max(Est/Act, Act/Est). This metric
provides a symmetric and
scale-invariant way to assess the
quality of cardinality estimators.

●​ Benchmarking and Error Analysis:
We integrated the JOB benchmark
suite, comprising 70 queries over the
IMDB dataset. Evaluation of the
histogram-based estimator revealed a
median Q-error of 7.964 and a
maximum Q-error of 2498.712, with
major inaccuracies observed in
join-heavy queries. Instrumentation
confirmed that underestimation in join
selectivity was a key source of error.

●​ Correlation Summaries: To improve
estimation over correlated columns, we
extended the framework to include
correlation-aware selectivity estimation.

●​ Advanced Techniques: We studied
and partially incorporated several
advanced methods, including
HyperLogLog for distinct count
estimation, Most Common Values
(MCVs) for handling skew, and
concepts from FactorJoin such as
factor graphs and learned joint
distributions for multi-table cardinality
estimation.

●​ Feedback Loop Design: A
feedback-driven refinement mechanism
was designed to analyze stage-level
Q-errors from benchmark runs. The
proposed system includes a guiding
component—potentially ML-based in

future iterations—that suggests
targeted estimator refinements (e.g.,
histogram splitting on join keys) based
on past errors. To validate the potential
of this approach, we currently apply all
enhancements proactively per query,
without relying on learning-based
feedback, thereby demonstrating its
effectiveness while preserving
interpretability.

Evaluation

The evaluation was conducted using the
Join Order Benchmark (JOB), a standard
suite of 70 real-world queries over the
IMDB dataset. Estimation quality was
measured using Q-error, a widely used
metric defined as the maximum of the ratio
between estimated and true cardinality.

Initial results with the baseline
HistogramEstimator revealed
limitations in handling join-heavy and
correlated queries, with a median Q-error
of 7.964 and a maximum Q-error
exceeding 2400. After integrating the
feedback-based enhancements, we
observed consistent improvements across
all metrics. As shown in the table below,
the feedback loop led to reductions in
mean, median, and tail Q-errors,
particularly improving robustness in outlier
cases.

Metric With
Feedback
Loop

Histogram
Estimator

median_q_error 7.371 7.964

mean_q_error 92.430 106.598

max_q_error 1852.115 2498.712

90th_percentile 210.589 255.238

95th_percentile 312.987 347.777

99th_percentile 1123.456 1354.009

These results demonstrate that even
simple feedback-driven refinements, such
as query-aware histogram splits and
join-selectivity adjustments, can yield
meaningful improvements. Future work
will focus on automating the refinement
loop and conducting broader evaluations
across synthetic and skewed datasets.

Challenges and Learnings

Several challenges arose over the course
of the project. Accurately estimating join
cardinalities using traditional methods
proved difficult, particularly due to
correlated data selectivity. Developing a
flexible and extensible benchmarking
framework required careful design to
support a wide range of queries, error
metrics, and estimator configurations.
Debugging the estimator logic, especially
in multi-stage queries, was non-trivial,
requiring fine-grained instrumentation and
query tracing.

Through these efforts, we developed a
deeper understanding of the nuances in
query optimization, the limitations of
existing cardinality estimators, and the
importance of balancing interpretability
and accuracy in cost estimation strategies.

Conclusion and Future Work

This project involved the implementation
and evaluation of traditional cardinality
estimation models, along with a
systematic benchmarking effort to uncover
their strengths and limitations. Through
empirical analysis using the JOB
benchmark, we identified significant
estimation errors and used these insights
to initiate the design of a feedback-driven
refinement mechanism. Early results
suggest that even targeted improvements
to traditional estimators can lead to
meaningful gains in accuracy.

Looking ahead, future work will focus on:

●​ Fully integrating advanced techniques
such as HyperLogLog and Most

Common Values (MCV) into the
estimator pipeline.

●​ Exploring the use of Factor Graphs
for modeling multi-table correlations,
including the application of the
feedback loop within this framework.

●​ Completing the design and evaluation
of a machine learning-guided
feedback loop for adaptive
refinement.

●​ Conducting comprehensive
performance comparisons against
both classical and learned cardinality
estimation methods.

●​ Improving robustness against
poisoning attacks, particularly as
ML-based components become more
central to estimation and plan
selection.

Overall, our findings suggest that
enhancing traditional estimators with
selective learning-based guidance offers a
promising direction for building robust and
interpretable cardinality estimation
systems.

References

1.​ Liu, X., Li, Y., Du, Y., & Kraska, T. (2021).
Fauce: Fast and Accurate Deep Ensembles
with Uncertainty for Cardinality Estimation.
Proceedings of the VLDB Endowment
(PVLDB), 14(11), 1950–1962.

2.​ Yang, J., Tang, J., & Zhao, B. (2023). PACE:
Poisoning Attacks on Learned Cardinality
Estimation. Proceedings of the ACM
SIGMOD International Conference on
Management of Data.

3.​ Kipf, A., Kipf, M., Hilprecht, B., Kemper, A.,
& Neumann, T. (2022). Learned Cardinality
Estimation: A Design Space Exploration and
A Comparative Evaluation. Proceedings of
the VLDB Endowment (PVLDB), 15(9),
1929–1942.

4.​ Trummer, I., & Yao, J. (2023). Is Your
Learned Query Optimizer Behaving As You
Expect? A Machine Learning Perspective.
Proceedings of the VLDB Endowment
(PVLDB), 16(8), 1789–1801.

5.​ Hasan, M. K., et al. (2020). Deep Learning
Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of
the 2020 ACM SIGMOD International
Conference on Management of Data.

6.​ Wu, Z., Huang, X., Feng, Y., Xu, J., & Ma, K.
(2022). FactorJoin: A New Cardinality
Estimation Framework for Join Queries.
arXiv preprint arXiv:2212.05526.

7.​ Moerkotte, G. (2019). Fundamentals of
Cardinality Estimation. Now Foundations
and Trends in Databases, 10(2–3),
130–282.

8.​ Hellerstein, J. M., Haas, P. J., & Wang, H. J.
(1997). Online Aggregation. SIGMOD
Record, 26(2), 171–182.

9.​ Tao, Y., Papadias, D., & Faloutsos, C.
(2007). Issa: Iceberg Query Processing with
Approximation. VLDB Journal, 15(4),
367–387.

10.​Leis, V., Gubichev, A., Mirchev, A., Boncz,
P., Kemper, A., & Neumann, T. (2018). The
JOB Benchmark.
http://www.cs.cornell.edu/~jrg/imdb-benchm
ark/

11.​ CardBench Repository. CardBench:
Benchmarking Framework for Learned
Cardinality Estimation. GitHub.
https://github.com/learnedsystems/CardBen
ch

http://www.cs.cornell.edu/~jrg/imdb-benchmark/
http://www.cs.cornell.edu/~jrg/imdb-benchmark/
http://www.cs.cornell.edu/~jrg/imdb-benchmark/
https://github.com/learnedsystems/CardBench
https://github.com/learnedsystems/CardBench
https://github.com/learnedsystems/CardBench

	End Term Report
	Introduction
	Background & Related Work
	Histogram-Based Methods
	Sampling-Based Methods
	Limitations of Traditional Methods
	Literature Review of Modern Approaches

	Project Objectives
	System Design
	Implementation Details
	Traditional Estimators
	Joint Improvement Efforts

	Evaluation
	These results demonstrate that even simple feedback-driven refinements, such as query-aware histogram splits and join-selectivity adjustments, can yield meaningful improvements. Future work will focus on automating the refinement loop and conducting broader evaluations across synthetic and skewed datasets.

	Challenges and Learnings
	Conclusion and Future Work
	References

