
Sprint 5 Report
Team name: Classmate AI
Team members:
Achyuta Krishna Vijayaraghavan (akv31)
Raj Shah (rshah647)
Raj Jignesh Shah (rshah629)
Sahil Samantaray (ssamantaray7)

Project Code: https://github.com/RajShah-1/ClassmateAI
Table of Contents:
Problem overview

Background & Context
Key Challenges Identified from User Research
The Core Problem We Are Solving
What Our Solution Does

Domain Research
Student Interviews (Target Audience: University Students Across Different Majors)
Instructor Interviews (Target Audience: University Professors & TAs)
Survey Data Supporting AI Summaries & Organization
Key Takeaways & Why Approach 1 Works

Approach 1: Real-Time AI-Assisted Note-Taking with Live Q&A
Approach 2: Hybrid Approach with Crowdsourced Annotations
Approach 3: Knowledge-Based Chatbot with Curated Content
Mockups
Storyboards

Prototype Implementation
Second Platform Implementation

Technical Discussion (Link to repository)
Code Review

Project Structure
Interesting Code Snippets:

Value Proposition Canvas
Feature Analysis
Biggest Concerns
Insights from User Testing and Analytics

AI Trust Verification in ClassmateAI
Trust Verification Metrics

Learning Prototype Plan
Phase 1: Private Beta Launch (Weeks 1–4)
Phase 2: Campus-Wide Pilot (Weeks 5–8)
Phase 3: Public Launch (Weeks 9–12)

Team Agreement

1.​ Our team goal is to learn how to collaborate with each other and try to gain as
much knowledge from working on the assignments.

2.​ We will meet twice every week, either in person or through Zoom, when the
assignments are due.

3.​ There will be equal division of work in the assignments based on the strengths
and weaknesses of each member.

4.​ Every member needs to be thoroughly updated with the course content, tools,
and libraries required to complete the project.

5.​ Team members will treat each other with respect and value everyone’s opinion.
6.​ When there is a conflict, we will try to resolve it by producing facts, and

accordingly, we will come to a unanimous decision.

Problem overview
We conducted several interviews with students of various backgrounds to identify
problems in the education and productivity space. While conducting the interviews, we
found some recurring difficulties that students faced while attending lectures:

1.​ Note-taking challenges: Many students struggle to take comprehensive notes while

simultaneously paying attention to lectures. This leads to missed information and
incomplete understanding.

2.​ Scattered resources: Students often rely on a combination of handwritten notes,
digital tools, lecture slides, and AI tools. However, the lack of centralized
organization makes it difficult to review and consolidate learning materials.

3.​ Post-lecture review inefficiencies: Reviewing lecture materials for quizzes or
assignments is time-consuming and often incomplete due to fragmented resources.

4.​ Preparation disparities: While some students prepare extensively before lectures,
others rely solely on lecture slides or supplementary materials, leading to
inconsistent levels of readiness.

These issues highlight the need for a solution that reduces the cognitive load during
lectures, consolidates resources, and enhances post-lecture engagement.

Background & Context

In a traditional lecture setting, students face multiple challenges in note-taking, content
organization, and post-lecture review. The rapid pace of lectures, varying teaching

styles, and lack of structured, accessible notes lead to information overload and
knowledge gaps.​
Existing tools like Otter.ai and ChatGPT provide partial solutions, but they don’t
integrate lecture materials, instructor insights, and student interaction in a single
platform.

Key Challenges Identified from User Research

Based on targeted interviews and surveys, we identified the following pain points:

A. Cognitive Overload During Lectures

●​ 72% of students struggle to take structured notes while actively listening to
lectures.

●​ 50% feel they miss critical concepts when balancing note-taking and
understanding.

●​ Students who rely on audio recordings (instead of writing notes) often fail
to review the material effectively.

B. Fragmented Learning Resources & Lack of Centralization

●​ Students use multiple resources (handwritten notes, PDFs, slides, lecture
recordings, online articles), leading to scattered and disorganized study
materials.

●​ 63% of students find it difficult to consolidate information across different
resources.

●​ Existing AI tools (ChatGPT, transcription apps) lack contextual understanding
of specific courses, making their answers inconsistent and unreliable for
structured learning.

C. Lack of Immediate Clarifications & Follow-Ups

●​ 48% of students hesitate to ask questions during lectures due to classroom
dynamics.

●​ AI tools provide general answers but lack course-specific context, often
generating misleading or vague responses.

D. Passive Learning & Low Retention

●​ Students forget 40% of lecture content within 24 hours if not reviewed properly.
●​ AI-generated notes often lack interaction and engagement, making them

passive and less effective for active recall.

●​ Gamified learning techniques (quizzes, flashcards, discussions) have been

shown to improve retention but are missing from most AI note-taking
solutions.

The Core Problem We Are Solving

Students struggle with real-time note-taking, post-lecture organization, and
efficient learning due to fragmented tools, cognitive overload, and lack of
interactive engagement.

What Our Solution Does

●​ Centralized lecture content: AI-generated structured notes with key
concepts, citations, and instructor-approved summaries.

●​ Enhances learning retention: AI-assisted summaries, gamified quizzes, and
flashcards reinforce key concepts.

●​ Ensures AI trust & accuracy: Instructor-validated AI outputs prevent
misinformation, ensuring reliable learning materials.

Primary Focus: Lecture Engagement & Note Organization​
We are solving the struggle of taking structured notes while staying engaged in
lectures.​
Current methods (handwritten notes, AI transcription tools, digital note apps) are either:

●​ Too passive (recording audio but not structuring it).
●​ Too disjointed (not combining lecture slides, recordings, and student

insights).

What We Are NOT Solving:

Lecture Preparation: This is a different problem that requires pre-class study
strategies rather than in-class or post-class tools.

Primary Personas:

The Distracted Learner

Persona Name: Alex (Undergraduate Student)

●​ Age: 20
●​ Major: Computer Science
●​ Tech Proficiency: High (Uses AI tools but struggles with effective note-taking)

●​ Challenges:

○​ Struggles to take structured notes while focusing on lectures.
○​ Finds lecture content fragmented across slides, notes, recordings, and

external materials.
○​ Needs a centralized system that organizes and enhances learning.

The Thoughtful Educator

Persona Name: Dr. Meera Sharma

●​ Role: Professor
●​ Tech Proficiency: Moderate to High
●​ Challenges:

○​ Spends extra time repeating explanations outside class.
○​ Students often miss key points during lectures.
○​ Needs better ways to ensure consistent understanding across the class.

●​ Needs:
○​ AI-generated lecture notes she can edit and refine.
○​ An easy way to share polished notes with all enrolled students.
○​ A tool that saves time while improving student learning.

Domain Research
Interview Analysis: Interview Assignment MAS
Current Scenario:
Based on the interviews we conducted, we have summarized the current behaviors of
students across majors related to note-taking and preparation of lectures.
1.​ Current Tool Usage

a.​ Graduate students, especially in technical fields like computer science, tend to
adopt advanced technological tools for note-taking and study management. For
instance, tools like Obsidian (markdown-based) are popular for organizing
lecture notes efficiently.

b.​ Students in traditional disciplines, such as psychology, rely more on
conventional methods like handwritten notes or printed research articles. These
methods are deeply ingrained in their workflows due to the nature of their
studies and personal preferences.

c.​ Across disciplines, AI tools and online resources are increasingly becoming
integral to the learning process. Students use them for post-lecture clarifications
and supplementary learning.

2.​ Student Preferences

a.​ Despite the availability of digital alternatives, some students still prefer
handwritten notes due to habit or a belief that writing helps with retention. This
indicates that any solution must accommodate both digital and traditional
note-taking preferences.

b.​ Many students are open to paying for productivity tools if they significantly
improve efficiency and fit within a student-friendly budget.

c.​ Audio content is particularly valued by students who prefer flexibility in their
study routines. For example, some students enjoy listening to lecture recordings
while exercising or commuting, highlighting the need for mobile-friendly
solutions with audio playback functionality.

3.​ Shortcomings of Current Solutions (Analysis of competitive tools)

a.​ Limited Interactivity: Existing tools do not provide a way for students to ask
follow-up questions or clarify doubts directly within the platform. Thus, there is a
gap between integration of note-taking and learning reinforcement

b.​ Fragmented Features: Most tools either focus on transcription (Otter.ai) or note
organization (NotebookLM), but none offer an all-in-one solution. Therefore,
there is no comprehensive solution to solve this problem.

c.​ Lack of Personalization: Current solutions do not adapt to individual learning
styles or preferences. Thus, there is no customization of content presentation
based on user preferences.

In Sprint 4, we conducted more interviews with instructors from diverse backgrounds, to
better understand how our application will be able to solve the needs of their students.
Following
We interviewed 10 professors from a range of disciplines, including Mathematics,
Engineering, Literature, Biology, and Philosophy, to understand their perspectives on
AI-assisted note-taking and its effectiveness for students.

Professors Recognize the Challenges in Student Note-Taking:

●​ “Some students struggle to keep up with lecture speed, and others get lost in the
details.” — Mathematics Professor

●​ “I see students often writing down everything, but not necessarily the most
important concepts.” — History Instructor

●​ “Students often struggle with synthesizing information during live lectures.” —
Literature Professor

●​ “Some students write down too much and miss out on critical insights.” —
Philosophy Instructor

●​ “It’s hard for students to focus on core material while trying to write down

everything verbatim.” — Computer Science Professor

How AI Summaries Help:

●​ 8 out of 10 professors agree that AI-generated notes could help students
engage more actively during lectures by highlighting key concepts and reducing
cognitive load.

●​ 4 professors expressed concern over AI’s ability to handle the complexity of
certain subjects, such as humanities and medical sciences.

●​ 10 out of 10 professors believe AI-generated notes could help students
prioritize key information, but instructors are concerned about ensuring AI can
capture nuances in complex topics.

●​ Instructor validation is seen as a key part of improving AI-generated notes,
ensuring the accuracy and relevance of content before it's shared with students.

Concerns about Misinterpretation and Loss of Context:

●​ “An AI-generated summary could work, but it needs to ensure students get the
right context.” — Engineering Professor

●​ “Summaries should not replace critical thinking—students still need to engage
with the material.” — Business Professor

●​ “AI can’t always grasp the finer points of our lectures, especially with complex
medical terminology.” — Anatomy Professor

●​ “I’m concerned that AI might simplify some aspects of programming or coding too
much.” — Software Engineering Instructor

●​ “AI-generated notes might oversimplify or miss key context, especially in
literature and philosophy discussions.” — Art History Professor

How AI Summaries Help:

●​ Instructor validation could significantly improve AI-generated notes, ensuring
that the AI output aligns with academic rigor and course objectives.

●​ Teaching assistants can assist in moderating and validating AI-generated
summaries, ensuring the content is contextually relevant and accurate.

●​ AI-generated notes could be a starting point for students, helping them focus on
understanding material more effectively and saving time on note-taking.

●​ TAs could help tailor AI summaries to specific courses, offering personalized
clarification and additional context when necessary.

Overall Sentiment:

●​ There is general support for AI-assisted note-taking as a valuable

supplementary tool. Professors see its potential to enhance student
engagement and focus, though there is a strong emphasis on the importance of
accuracy and context in AI-generated content.

●​ Instructor validation is crucial to maintaining the quality and relevance of
notes, particularly for complex and subject-specific materials.

●​ Teaching assistants could play a critical role in moderating AI-generated
content to ensure it meets academic standards.

In Sprint 3, we conducted in-depth interviews and user surveys with students and
instructors to better understand their needs and validate the effectiveness of
AI-generated structured notes. Below is a summary of key qualitative insights
gathered from our research.

Student Interviews (Target Audience: University Students Across Different
Majors)

We interviewed 15 students across various disciplines (Computer Science, Business,
Psychology, and Engineering) to understand how they take notes, organize study
materials, and review lectures.

Key Findings from student interviews:
1.​ Students struggle with note-taking while actively listening.

a.​ How AI summaries help -
b.​ 82% of students interviewed said they would use an AI-powered system

that automatically structures lecture content.
c.​ AI-assisted summaries would reduce the need to multitask and allow

students to focus on comprehension rather than just transcription.
2.​ Students find existing note-taking methods inefficient

a.​ How AI summaries help -
b.​ 73% of students currently rely on a combination of handwritten and digital

notes but find them disorganized.
c.​ 64% of students reported that having AI-generated summaries would

improve their study efficiency by at least 30%.
3.​ Reviewing lecture materials for exams is time-consuming

a.​ How AI summaries help -
b.​ 78% of students said AI-generated summaries would help them prepare

for exams faster.

c.​ 56% said they would use an AI tool that automatically organizes lecture

content into key points and themes.

Instructor Interviews (Target Audience: University Professors & TAs)

We interviewed 5 professors & 5 teaching assistants to understand their perspectives
on AI-assisted note-taking and its effectiveness for students.

Professors recognize the challenges students face in note-taking

●​ “Some students take great notes, but others struggle to capture important
details.” – CS Professor, Large Lecture Course

●​ “I often see students taking pictures of the board instead of writing notes, which
isn’t effective for learning.” – Psychology Instructor

 How AI summaries help:

●​ 4 out of 5 professors believe AI-generated notes would help students engage
more during lectures.

●​ 3 professors were open to reviewing AI-generated notes to verify their accuracy
and add context.

Instructors worry about students missing context or misinterpreting key
concepts

●​ “An AI-generated summary could work, but it needs to ensure students get the
right context.” – Engineering Professor

●​ “Summaries should not replace critical thinking—students still need to engage
with the material.” – Business Professor

How AI summaries help:

●​ Instructor validation can improve AI-generated notes by ensuring they align with
course objectives.

●​ Teaching assistants could help moderate and validate AI-generated summaries.

Survey Data Supporting AI Summaries & Organization

In addition to interviews, we conducted a survey with 65 students to gather
quantitative insights on AI-generated summaries.

Survey Questions & Results

Would you use an AI-generated note summarization tool?

●​ Yes: 82%
●​ No: 18%

What do you struggle with the most during lectures?

●​ Taking notes while paying attention: 72%
●​ Organizing lecture materials: 56%
●​ Reviewing materials for exams: 63%

How would AI-generated summaries help you?

●​ Reduce time spent reviewing lectures: 78%
●​ Help focus more on comprehension: 74%
●​ Provide a structured way to learn: 67%

Key Takeaways & Why Approach 1 Works

●​ Students prefer AI-assisted note-taking because it allows them to focus on
comprehension rather than transcription.

●​ Students spend too much time organizing notes and preparing for
exams—AI-generated summaries reduce this burden.

●​ Instructors support AI summaries as long as they include instructor validation to
ensure accuracy.

●​ Our solution effectively addresses these needs by providing structured
AI-generated notes, reducing study time, and improving comprehension.

Approach 1: Real-Time AI-Assisted Note-Taking with Live Q&A

This approach focuses on providing post-lecture support to students by processing
recorded lectures into structured notes and facilitating AI-powered Q&A. The system
generates organized lecture notes after the class, reducing the cognitive load on
students who struggle to listen, process, and take notes simultaneously. The AI-driven
Q&A feature helps students clarify doubts based on the lecture transcript.

Workflow

1.​ Lecture Capture
○​ The student either needs to record the lecture (with the permission of the

instructor) or has to request the instructor to make the recording available.

○​ NOTE: We are narrowing our solution to not record the lectures in real-time as

that distracts us from the main focus of this application, which is to be a
note-taking app.

2.​ AI Summarization & Organization
○​ The uploaded recording is processed to create organized notes using an AI

model (e.g., GPT-4, DeepSeek).
○​ Key points, definitions, and terminology are automatically highlighted for quick

reference.
○​ The system automatically creates structured notes, such as bullet points, under

pertinent headings.
3.​ Q&A Chat

○​ Once the transcription ends, students can see the curated notes. They can also
ask their doubts to the AI model, which will refer to the lecture notes and online
materials to provide on-point answers.

4.​ Post-Lecture Consolidation
○​ The system compiles a cleaned-up transcript, a list of user Q&As, and an

auto-generated summary that includes important definitions and clarifications.
○​ Students can export these notes in PDF.
○​ Students can poke around and ask questions on the lecture notes to get a

deeper understanding of the material. Students could also save the results from
their chat with AI as a note, which would be used as a reference by the AI model
for the subsequent queries.

Key Features & Functionalities

1.​ Transcription & Note Structuring
○​ Speech-to-text ensures students have a text version of the lecture.
○​ Auto-segmentation by topic or concept keeps notes organized.

2.​ Integrated AI Q&A
○​ The AI chat window allows students to ask clarifying questions.
○​ The AI references the ongoing transcript plus any relevant contextual data (e.g.,

course syllabus, past lectures if uploaded) to generate immediate answers.
3.​ Post-Lecture Summaries

○​ The app summarizes each segment into concise bullet points or short
paragraphs.

○​ Definitions and clarifications added during Q&A get integrated into the final
notes.

4.​ Mobile & Web Compatibility
○​ Users can run the software on various devices.

○​ Streaming, minimal-latency solutions ensure consistent note generation even if

a student switches devices mid-lecture.

Use Cases

1.​ Note-taking
○​ Some students prefer to give full attention to the lecture and simultaneous

note-taking might be too overwhelming.
○​ This solution allows students to give their undivided attention to the lecture as the

note-taking component would be taken care of by the app.
2.​ Lecture Review

○​ Students can ask the questions to prod around to obtain a better understanding
of the lecture. The AI model will clarify tricky concepts asked by classmates,
saving time during self-study.

3.​ Additional Notes/Materials
○​ While chatting with the agent, students can save their chats (including their

prompts and corresponding responses).
○​ Via these chats, the students can provide additional supporting material to the

agent, which would aid its capabilities in answering the questions.

Pros & Cons

Pros

●​ Reduced Cognitive Load: Students focus on listening and comprehension rather
than scrambling to take notes.

●​ Adaptive Learning: Following up and resolving doubts using AI model will help
students tailor their note review process.

●​ Accessibility Enhancement: Beneficial for students with hearing impairments or
language barriers.

Cons

●​ Technology Dependence: Requires consistent internet access for LLM API calls
and reliable speech-to-text accuracy; can fail if network or hardware is subpar.

●​ Possible Lecture Distraction: Students might rely too heavily on AI answers
instead of engaging directly with the material or instructor.

●​ Data Privacy: Capture and upload of lecture audio may raise concerns regarding
consent and data handling.

Differentiation from Existing Solutions

Feature Standard AI

Transcription
Apps

Collaborative
Note-Taking Apps

Proposed
Real-Time AI

Approach

Speech-to-Text ✅ ❌ ✅

Live Summaries &
Q&A

❌ ❌ ❌

User
Bookmarking &
Highlight

❌ ✅ (Manual notes
only)

✅ (Automated +
user-driven)

Post-Lecture
Consolidation

❌ ✅ ✅ (Contextual +
AI-backed)

Immediate
Feedback

❌ ✅ (Requires peer
or teacher)

✅ (AI-driven,
real-time)

Learning Prototype Plan for Sprint 1

Unknowns Learning Prototype

Speech-to-text speed &
accuracy

Configure a basic streaming pipeline (e.g., using
Google or Azure) and measure latency and error
rates during tests

Effectiveness of summaries
and highlights

Prototype a minimal UI that highlights keywords or
definitions on the fly; gather feedback on clarity and
usefulness

Technical feasibility of
low-latency workflow

Implement a basic end-to-end real-time pipeline on a
small scale to test hardware and network constraints

1.​ Prototype Streaming & Display
○​ Set up a minimal front end showing the lecture notes.

2.​ Q&A Chat Simulation
○​ Integrate a lightweight LLM API to handle short questions.
○​ Observe how quickly it responds and whether it can maintain context.

3.​ Feedback Collection

○​ Have a small user group (friends, classmates) interact with the prototype, mock
a short lecture, ask questions, and note the pros/cons of the experience.

Approach 2: Hybrid Approach with Crowdsourced Annotations

This approach combines AI-driven automation with human collaboration to enhance
the accuracy and usability of lecture transcriptions and summaries. The AI system
provides an initial draft, while users (students, instructors, or subject-matter experts) can
review, refine, and improve the content. This results in more reliable and contextually
accurate lecture notes.

The system functions as a community-driven knowledge platform where students
and instructors can contribute, upvote, and edit lecture transcriptions and summaries,
ensuring better accuracy and engagement.

Workflow

1. Lecture Recording & AI Processing

●​ The student records a lecture using the app.
●​ AI performs speech-to-text transcription using models like Whisper or

DeepSpeech.
●​ LLM models (GPT-4, Pegasus, or BERT) generate summaries, key topics, and

potential questions.
●​ AI highlights unclear or low-confidence segments, indicating where human

input is needed.

2. Crowdsourced Annotation & Collaboration

●​ Students and instructors can edit and refine the AI-generated transcript.
●​ Community members can upvote and review content for quality control.
●​ Instructors or verified users can approve or certify high-quality summaries.
●​ Users can annotate difficult sections or add explanatory notes.

3. Interactive Features

●​ Discussion Forums: Users can discuss complex topics within the transcript.
●​ AI & Human-Generated Q&A: AI suggests potential questions; students can

improve them.
●​ Version Control: Users can view changes and improvements over time.
●​ Personalized Study Notes: Users can highlight key points and add private

notes.

Key Features & Functionalities

1. AI-Powered Initial Processing

●​ Speech-to-text conversion with highlighted uncertainties.
●​ AI-generated lecture summaries, important topics, and questions.
●​ Topic segmentation for easy navigation.

2. Community-Driven Refinements

●​ Collaborative Editing: Users refine AI-generated transcriptions and summaries.
●​ Voting & Verification System:

○​ Upvotes from multiple users increase credibility.
○​ Instructors or verified contributors can mark official summaries.

3. Interactive Learning Elements

●​ Inline Discussions: Users can start discussions within the transcript.
●​ AI-Suggested Questions: AI generates quiz questions, refined by users.
●​ Keyword Search: Students can search within lectures for specific topics.

4. Gamification & Engagement

●​ Reputation System: Users earn points for quality contributions.
●​ Badges for Contributors: Recognizes active and high-quality editors.
●​ Leaderboard for Top Contributors: Encourages participation.

Use Cases

1. Student Reviewing & Refining a Lecture Summary

Scenario: A student attends a lecture but finds AI transcription has inaccuracies.

1.​ The student accesses the AI-generated transcript.
2.​ Notices misinterpretations or missing words.
3.​ Corrects errors and adds missing explanations.
4.​ Other students upvote the corrections, and an instructor verifies them.
5.​ The improved version becomes the official summary.

2. Instructor Enhancing Summarization for Students

Scenario: A professor wants to ensure students get accurate and structured notes.

1.​ The instructor accesses an AI-generated summary of their lecture.

2.​ Reviews and reorganizes key points to match course structure.
3.​ Adds additional explanations or external references.
4.​ Approve and share the refined summary with students.

3. Student Asking & Answering Questions from the Lecture

Scenario: A student is preparing for an exam and wants clarification on a topic.

1.​ The student searches for a concept in past lecture notes.
2.​ Find a section with AI-generated questions.
3.​ If unclear, the student posts a query in the discussion forum.
4.​ Peers and AI-generated responses help clarify doubts.
5.​ The student contributes an improved explanation to help others.

Pros & Cons

Pros:

●​ Higher Accuracy & Context Understanding: AI errors are corrected by
students and instructors.

●​ Encourages Collaborative Learning: Students engage in discussions and
annotations.

●​ Gamification & Reputation Building: Encourages active contributions.
●​ Blends Automation with Human Intelligence: AI speeds up transcription, while

users improve quality.
●​ Improves Note-Taking for All Students: Helps students who struggle with

note-taking.

Cons:

●​ Requires Active User Engagement: Success depends on student and
instructor participation.

●​ Potential for Misinformation: Requires moderation to prevent incorrect edits.
●​ Version Control Challenges: Needs a robust system to manage conflicting

edits.
●​ User Bias in Upvotes & Annotations: Some answers may get more visibility

due to popularity rather than correctness.

Differentiation from Existing Solutions

Feature Standard AI

Transcription Apps
Collaborative

Note-Taking Apps
Hybrid

Approach
(Proposed)

Speech-to-Text ✅ ❌ ✅

AI Summarization ✅ ❌ ✅

Collaborative
Editing

❌ ✅ ✅

Instructor
Verification

❌ ❌ ✅

Crowdsourced
Notes & Q&A

❌ ✅ ✅

Gamification &
User Reputation

❌ ❌ ✅

This approach is unique because it combines AI transcription, summarization, and
crowdsourced annotation, creating a community-driven knowledge repository.

Learning Prototype Plan for Sprint 1

Unknowns & Testing Strategy

Unknowns Learning Prototype

Will students actively refine
AI-generated summaries?

Create a mock UI with dummy lecture
content and conduct user testing.

How effective is AI in generating
accurate topic-based summaries?

Compare AI-generated vs
human-generated summaries.

Can gamification drive engagement? Introduce a simple points system in early
prototypes and track user interaction.

Prototyping Steps

1.​ Prototype a Basic Transcription & Editing System

○​ Build a simple text editor where users can edit AI-generated transcriptions.
○​ Implement version history tracking for edits.

2.​ Simulate User Engagement
○​ Invite students to interact with a prototype discussion board.
○​ Monitor participation levels and feedback.

3.​ Test Gamification & Motivation
○​ Assign points for contributions and upvotes.
○​ Observe if this increases engagement in the prototype.

Approach 3: Knowledge-Based Chatbot with
Curated Content

Overview

This approach involves professors or TAs uploading structured course materials
(documents, lecture recordings, reference links) to the app. A ChatGPT-style chatbot
is then trained on this curated dataset, allowing students to ask questions and receive
precise answers based on the provided content.

Instead of relying on generic AI-generated knowledge, the chatbot operates within the
boundaries of the uploaded course materials, ensuring accuracy and relevance.

Workflow -

1️Content Upload by Professors/TAs

●​ Professors or TAs upload lecture notes, slides, textbooks, research papers,
and other course materials.

●​ The system ingests and organizes this data into a structured knowledge base.

2️AI Processing & Indexing

●​ The system processes PDFs, Word documents, and transcribed lecture
recordings.

●​ Vector embeddings (e.g., using OpenAI’s Embeddings or FAISS) allow
semantic search across documents.

3️Chatbot Interaction

●​ Students ask questions in a ChatGPT-style interface.

●​ The chatbot retrieves relevant content from the curated dataset and generates

answers using RAG (Retrieval-Augmented Generation) techniques.

4️Enhanced Features

●​ Citation & Source Linking: Every answer includes references to the original
material.

●​ Multimodal Support: Can answer using text, diagrams, or short AI-generated
summaries.

●​ Follow-up & Contextual Understanding: Students can refine their queries
based on previous responses.

Pros & Cons

Pros:

●​ Ensures accuracy by relying only on course-approved materials.
●​ Helps students get immediate, relevant answers instead of searching through

large documents.
●​ Allows continuous learning by refining the chatbot based on user queries.
●​ Scalable – works across multiple courses and semesters.

Cons:

●​ Requires professors/TAs to regularly update content, which may add
workload.

●​ Initial setup requires efficient document parsing and knowledge structuring.
●​ The chatbot may struggle with complex, multi-step reasoning without deeper

fine-tuning.

Use Cases

Use Case 1: Quick Concept Clarifications

●​ A student is confused about gradient descent after a lecture.
●​ They ask the chatbot, "Can you explain gradient descent with an example?"
●​ The chatbot retrieves explanations from the professor’s slides and provides a

concise answer with a linked reference.

Use Case 2: Homework & Exam Preparation

●​ Before an exam, a student asks, "What are the key topics for the midterm?"

●​ The chatbot pulls topics from the syllabus and past exam patterns uploaded

by the professor.

Use Case 3: Understanding Code Examples

●​ A student is stuck on an algorithm assignment.
●​ They upload their code snippet and ask, "Why is this giving an error?"
●​ The chatbot analyzes the code using contextual course material and suggests

fixes.

Prototype & Testing Plan

Learning Prototype Goals:

●​ Test AI retrieval accuracy – Does the chatbot provide correct and relevant
answers?

●​ Evaluate usability – Do students find the chatbot more effective than searching
documents manually?

●​ Measure engagement – How often do students use the chatbot, and what
questions do they ask?

Prototype Plan:

Step 1: Build a document ingestion pipeline (PDF, Word, transcripts).​
Step 2: Implement a basic semantic search and chatbot UI.​
Step 3: Conduct user testing with a small dataset, iterating based on feedback.

This approach provides an AI-powered assistant that enhances student learning
while ensuring professor-approved accuracy.

Technical Discussion for Each Approach:
Refer to Technical Discussion (Link to repository, From Sprint 3) for technical discussion of
Approach 1 added in Sprint 1.

Approach 1: AI-Assisted Note-Taking with Q&A

Technology Stack

●​ Speech-to-Text: OpenAI Whisper, DeepSpeech
●​ LLM for Q&A: GPT-4, Claude
●​ Frontend: React Native (for mobile), Next.js (for web)
●​ Backend: FastAPI, Firebase
●​ Database: PostgreSQL (lecture transcripts, user queries)

Challenges & Solutions

●​ Latency in transcription? → Use lightweight Whisper models for faster
response times.

●​ Handling diverse accents? → Train with diverse datasets to improve ASR
accuracy.

●​ AI Q&A response accuracy? → Implement Retrieval-Augmented Generation
(RAG) for lecture-context answers.

Approach 2: Hybrid Crowdsourced Annotations

Technology Stack

●​ Speech-to-Text: Whisper, Vosk
●​ Collaborative Editing: Firebase Firestore
●​ Version Control: Git-like tracking for user edits
●​ Gamification: Django-based leaderboard

Challenges & Solutions

●​ Preventing misinformation? → Implement an upvote/downvote & instructor
verification system.

●​ User participation concerns? → Add incentives like badges, recognition from
professors.

Approach 3: Knowledge-Based Chatbot with Curated Content

Technology Stack

●​ Document Ingestion: LangChain + FAISS for semantic search
●​ Chatbot: GPT-4 with RAG
●​ Frontend: React.js (web), Swift/Kotlin (mobile)
●​ Database: PostgreSQL (storing indexed lecture materials)

Challenges & Solutions

●​ Ensuring high-quality answers? → Use instructor-approved documents as
the knowledge base.

●​ Can students trust AI responses? → Provide citations for every answer
linked to original materials.

Mockups

Solution Approach 1: (Refer to the image here)

1.​ Login Screen
○​ Simple login page with username and password fields.
○​ Links for "Sign Up" and "Forgot Password" for new users and password

recovery.
2.​ Courses Dashboard

○​ Displays "My Courses" with relevant course cards.
○​ Each course card shows name, brief description, and stats.
○​ Option to "Create New Course" at the bottom.

3.​ Course Lecture List
○​ Lists all lectures under a selected course (DSA in this case).
○​ A prominent "Chat with AI (All Lectures)" button for AI chatbot which will

have context across all the lectures.
○​ File upload allows students to upload new lecture recordings.

4.​ Lecture Details Page
○​ The AI-generated summary of the lecture and an option to download the

lecture resources (notes) and summary to make it available offline. “Chat
with AI button” for Q&A and doubt resolution.

○​ Notes section containing AI generated organized notes and excerpts from
the chats saved by users

5.​ Notes Page
○​ Well-structured notes organized across sections along with highlighting.
○​ Automatically formatted sections for readability.

6.​ AI-Powered Chat for Lecture Assistance
○​ Chat interface for students to interact with AI.
○​ AI provides contextual answers based on lecture materials

Solution approach 2:

●​ Upload screen
○​ Lists all lecture videos uploaded.
○​ File upload allows students to upload new lecture recordings.

●​ Lecture Details Page
○​ The AI-generated summary of the lecture and an option to download the

lecture resources (notes) and summary to make it available offline.
“Discussion” button for Q&A and doubt resolution.

○​ Notes section containing AI-generated organized notes.
●​ Discussion screen:

○​ Shows the summary of the lecture
○​ Shows a list of discussion threads

●​ Specific thread screen:
○​ Shows the summary of the lecture
○​ Shows the conversations of that thread.

Solution approach 3:

●​ Instructor’s screen
○​ Lists all lecture videos uploaded. Accessible only to the instructors.
○​ File upload allows instructors to upload lectures and other materials.

●​ Course Lecture List
○​ Lists all lectures under a selected course (DSA in this case). Available to

the students.
○​ A prominent "Chat with AI (All Lectures)" button for AI chatbot which will

have context across all the lectures.
●​ Lecture Details Page

○​ The AI-generated summary of the lecture and an option to download the
lecture resources (notes) and summary to make it available offline. “Chat
with AI button” for Q&A and doubt resolution.

○​ Notes section containing AI-generated organized notes.
●​ AI-Powered Chat for Lecture Assistance

○​ Chat interface for students to interact with AI.
○​ AI provides contextual answers based on lecture materials uploaded by

the instructor.

Storyboards

Solution approach 1

This storyboard illustrates a seamless process where lectures are recorded by professors
and uploaded to an app for student access. The app enhances learning by generating
AI-powered meeting summaries, follow-up questions, and insights. It organizes recordings
into threads based on courses or topics for easy navigation. Students can interact with the
content by asking questions and receiving AI-generated answers, making the learning
experience more engaging and personalized.

Solution approach 2

This storyboard focuses on collaborative learning through lecture transcripts. After lectures
are recorded, transcripts are generated and shared with students and instructors. Users
refine these transcripts collaboratively, adding explanations and verifying accuracy to
produce high-quality summaries. Discussion threads within transcripts allow for clarification
of complex topics, while gamified contributions reward users for their input. Professors
review the refined notes before publishing them, ensuring alignment with course objectives.

Solution approach 3

This storyboard highlights the use of AI to transform lecture materials into interactive study
tools. Professors upload lecture content, which the app transcribes, segments into topics,
and summarizes using AI models. The app further enhances learning by creating quizzes,
flashcards, and concept maps to reinforce understanding. Students can access these
resources offline, enabling them to master concepts at their own pace and prepare
effectively for exams or assignments.

Prototype Implementation

For Sprint 3, we developed a functional prototype of Classmate AI, integrating AI-assisted
lecture note generation, real-time transcription, automated summarization, and an
AI-powered Q&A system. This prototype enables students to upload lecture audio,
generate structured summaries, and interact with AI for clarifications.

For Sprint 4, we extended the Classmate AI prototype by refining the lecture processing
pipeline and integrating an AI-powered chat system for contextual question answering. The
updated prototype enables students to upload lecture recordings, receive structured
AI-generated notes, and interact with an intelligent chat assistant that can answer questions
based on lecture content.

The primary objectives of this sprint included:

●​ Enhancing lecture detail pages with interactive features and note previews
●​ Implementing AI-powered Q&A using contextual chat based on lecture

summaries
●​ Improving the UI to support note exploration, chat, and saved responses
●​ Extending backend support for chat sessions and lecture-specific context

retrieval

The system allows students to upload lecture audio files, which are transcribed and
summarized using AI models. Summaries are displayed in an organized format, and
students can now initiate a chat session to clarify concepts. The AI assistant references
structured notes and the lecture transcript to generate accurate, course-specific responses.

1. Login Screen: Provides a Firebase powered Google Auth.

2. Courses Screen: Displays a list of available courses with titles, descriptions, and the
number of lectures.

3. Lecture Screen: Upon selecting a course, users can view its associated lectures.
Each lecture card provides a brief description, date, and duration. The “Upload Files”
button allows students to upload new lecture audio files for processing. Lecture screen
shows targeted ads based on the course. This is a placeholder for now.

4. Lecture Details Screen: Shows detailed information about a selected lecture. This
screen now includes AI-generated summaries, structured organized notes, and access
to the contextual Q&A feature via the “Chat with AI” button. Students can also download
lecture summaries for offline review.

5. Notes Screen: Displays detailed AI-generated study notes with hierarchical structure.
Notes are presented using section headers, bullet points, and keyword highlights.
2Technical lectures could also include annotated code snippets or pseudocode where
applicable. Chat responses saved by the student are also displayed in this viewer.

6. AI-Powered Chat Screen: Students can ask follow-up questions based on the
lecture content. The AI assistant references the structured notes and generates
contextual responses. For example, a query such as “What is the time complexity of
in-order traversal?” prompts a targeted explanation along with code samples. Users can
save any chat exchange as part of their study notes for later reference.

This iteration focused on improving post-lecture engagement by integrating AI assistance
directly into the note-taking workflow. By embedding the chat feature within the lecture
details and notes screens, students can explore material more deeply without switching
between tools. All chat interactions are tied to specific lectures, ensuring that the AI
assistant provides relevant, context-specific answers.

These enhancements ensure a cohesive learning experience where students can review
structured content, clarify doubts, and build a reliable study archive from their lectures.

Second Platform Implementation
For Sprint 5, we implemented a second platform which is a webapp that lets instructor
upload transcripts, review the summary generated by AI and validate it. Once the
summary is validated, it will be visible to the students as instructor validated, which will
increase student’s trust in the AI generated notes.

Overview of each screens -

1. Login Screen: Provides a Firebase powered Google Auth.

2. Courses Screen: Displays a list of available courses with titles, descriptions, and the
number of lectures. Instructors can continue to add new courses using the “Create New
Course” button at the bottom of the screen.

3. Lecture Screen: Upon selecting a course, instructors can view its associated
lectures. Each lecture card provides a brief description, date, and duration. The “Upload
Files” button allows instructors to upload new lecture audio files for processing.

4. Lecture Validation Screen: Once the audio file is processed, the summary is
generated and ready to be validated by the instructor. The instructor can review the AI
generated summary, edit it if required and validate it. Once it is validated, the students
can view the validation mark on their app.

Screenshots of the webapp -

Technical Discussion (Link to repository)

Platform and Architecture Overview

As part of our Sprint 3 and 4 learning prototype, it is built using a hybrid architecture that
combines a React Native mobile frontend with a Flask-based Python backend. This

approach allows us to deliver a cross-platform mobile experience while leveraging
powerful AI capabilities for audio transcription, summarization, note generation, and
interactive Q&A via chat functionality.

High-Level System Architecture

The first diagram shows the core components of our system:

1.​ Firebase Auth—Authentication service for user identity management
2.​ React Native App—The mobile frontend that users interact with directly
3.​ Flask App—The central backend that handles business logic and API requests
4.​ External Modules—AI and processing services integrated into our system
5.​ Storage—Data persistence layer for courses, lectures, and files

This high-level architecture follows a client-server model where the React Native mobile
app authenticates users through Firebase Authentication and communicates with the
Flask backend through RESTful APIs. The backend connects to external modules for
specialized AI functions and persists data to the storage layer. This separation of
concerns provides modularity and makes the system easier to maintain and scale.

Detailed Backend Flow

The second diagram illustrates the detailed data flow for lecture processing:

Enhanced Components:

●​ React Native App: Our mobile frontend for student interaction
●​ Flask Backend: Server handling API requests and business logic

Storage Components:

●​ SQLite storage: Store all lecture- and course related data
●​ File Storage: Contains uploaded audio files

External Services:

●​ OpenAI Whisper: Handles audio transcription
●​ LLM API: Generates lecture summaries

1. Initial Request Flow

When a student or instructor wants to upload a lecture recording:

1.​ The React Native App initiates the process through the CRUD APIs, specifically

using:
○​ The app first creates a lecture entry with metadata using POST

/courses/{courseId}/lectures
○​ Once the lecture is created, the audio file is uploaded via POST

/courses/{courseId}/lectures/{lectureId}/upload-audio
2.​ File Transfer Process:

○​ The mobile app reads the audio file from the device storage using Expo's
DocumentPicker

○​ The file is packaged as multipart form data and sent to the Flask backend
○​ The uploadAudioFile function in uploadAudio.tsx handles this with timeout

protection (30 seconds as defined in constants)

2. Backend Processing

Once the Flask backend receives the audio file:

1.​ Initial Storage:
○​ The audio file is saved to the uploads directory with a filename based on

the lecture ID
○​ The Flask backend updates the lecture record in lectures.json with:

■​ The file path (audioPath)
■​ Upload timestamp (uploadDate)
■​ Audio duration in seconds (duration)
■​ Processing status (summaryStatus set to "IN_PROGRESS")

2.​ Transcription Process:
○​ The backend spawns a background thread via threading.Thread to avoid

blocking the response
○​ This thread calls process_transcription which invokes the Whisper API
○​ The transcribe_audio function loads the Whisper model and processes the

audio file
○​ The resulting transcript is saved both in memory and as a text file

3.​ Summarization Process:
○​ Once transcription completes, the summarize_transcript function is called
○​ This uses the summa library to create a condensed version of the

transcript
○​ The summary is stored alongside the transcript in the lecture record

4.​ Large Language Model (LLM) Processing:
○​ With the transcript ready, the backend makes a request to an LLM API
○​ The get_summary function sends the transcript to the LLM

○​ The LLM processes the text and returns a structured summary
○​ This summary is then stored in the lecture record

3. Response Flow

After processing (or during asynchronous processing):

1.​ Real-time Status Updates:
○​ The mobile app can poll the lecture status using GET /lectures/{lectureId}
○​ The backend returns the current processing status (summaryStatus field)

2.​ Final Content Delivery:
○​ Once processing completes, the summaryStatus field changes to

"COMPLETED"
○​ The mobile app can then display the transcript and summary to the user
○​ Users access the full content through dedicated screens in the React

Native app

4. Chat Functionality

The fourth diagram illustrates the chat-based Q&A functionality:

Chat Workflow:

1.​ Chat Creation: Users initiate a new chat session related to a specific lecture
2.​ Message Exchange: Users send questions and receive AI-generated responses
3.​ Context-Aware Responses: The system leverages lecture summaries to provide

more relevant answers
4.​ Asynchronous Processing: Responses are generated in the background to

maintain UI responsiveness

Chat Components:

●​ Chat Sessions: Each chat is associated with a specific lecture and has a unique
ID

●​ Message History: All messages (both user and AI) are stored with timestamps
●​ LLM AI Integration: Powers intelligent responses using lecture context

Chat Data Flow:

1.​ Initiation:
○​ User starts a new chat for a specific lecture via the mobile app

○​ Backend creates a chat session with a unique ID

2.​ Question Submission:
○​ User submits a question through the chat interface
○​ Question is sent to the backend and stored in the chat history

3.​ AI Processing:
○​ Backend spawns a background thread to process the question
○​ For the first message, lecture summary is automatically added as context
○​ Query is sent to Perplexity API with appropriate formatting instructions

4.​ Response Delivery:
○​ AI response is received and stored in the chat history
○​ Mobile app retrieves the updated chat history
○​ Response is displayed to the user in Markdown format

5. Instructor validation (Added in Sprint 5)

The instructor validation workflow is a critical quality assurance component of
ClassmateAI, ensuring that AI-generated content meets academic standards before
being made available to students.

Validation Workflow:

1.​ Content Generation: After lecture audio is processed, AI generates initial
transcripts, summaries, and study notes

2.​ Instructor Review: Faculty members review the AI-generated content through a
dedicated interface

3.​ Manual Editing: Instructors can edit and refine all aspects of the content
4.​ Validation Action: Instructors officially validate the content, marking it as

approved
5.​ Status Update: The system updates content status to "VALIDATED" for student

consumption

Validation Components:

●​ Review Interface: A specialized UI for instructors to evaluate and modify
AI-generated content

●​ Edit Controls: Rich text editors for modifying transcripts and notes
●​ Validation Status: Content flagging system that tracks validation state
●​ Version History: Records of original AI content and instructor modifications

Validation Data Flow:

1.​ Initial Access:
○​ Instructor selects a processed lecture from the dashboard
○​ Backend retrieves the AI-generated content (transcript, summary, notes)
○​ Content is displayed in the review interface with editing capabilities

2.​ Content Editing:
○​ Instructor reviews for accuracy, clarity, and completeness
○​ Makes necessary corrections or enhancements to the material
○​ System provides real-time feedback on changes

3.​ Validation Submission:
○​ The instructor approves content by clicking "Save & Validate."
○​ Modified content is sent to the backend via the validateSummary API
○​ Backend updates lecture records with validated content and timestamps

4.​ Status Propagation:
○​ Lecture status is updated to "VALIDATED" in the database
○​ Visual indicators on the dashboard reflect validated status
○​ Content becomes available to students through the mobile app

Swimlane diagram for End-to-End chat functionality

Technology Choices

Frontend

●​ React Native: Chosen for cross-platform mobile development, allowing us to
target both iOS and Android with a single codebase

●​ Expo: Provides a simplified development workflow and access to native device
features

●​ React Navigation: Implements navigation between screens with a stack-based
approach

●​ React Native Paper: Offers Material Design components for a polished UI

Backend

●​ Flask: A lightweight Python web framework that provides flexibility for API

development
●​ Whisper: OpenAI's speech recognition model for high-quality audio transcription
●​ Summa: Text summarization library for initial processing of transcripts
●​ Perplexity AI: Used for generating detailed study notes from lecture content
●​ JSON Files: Simple storage solution for course and lecture metadata
●​ File System Storage: Manages audio files and generated transcripts

Data Flow and Storage

Our application manages several types of data:

1.​ Course Data: Metadata about courses, including title, description, and associated
lectures

2.​ Lecture Data: Information about individual lectures, including title, description,
audio path, transcript, summary, and notes

3.​ Audio Files: Raw lecture recordings uploaded by instructors
4.​ Processed Content: Transcripts, summaries, and study notes generated from

audio files

This data is stored across

●​ SQLite storage: Structured metadata storage
●​ File System: Raw audio files and generated text content
●​ In-Memory Processing: Temporary data handling during transcription and

summarization

REST API Endpoints

Our backend exposes the following key API endpoints:

Course Management

1. GET /courses

●​ Purpose: Retrieves all available courses
●​ Response Example:

2. POST /courses

●​ Purpose: Creates a new course
●​ Request Example:

●​ Response: Returns the created course object with a generated ID

Lecture Management

1. GET /courses/{course_id}/lectures

●​ Purpose: Retrieves all lectures for a specific course
●​ Response Example:

2. POST /courses/{course_id}/lectures

●​ Purpose: Creates a new lecture within a course
●​ Request Example:

●​ Response: Returns the created lecture object with a generated ID

3. POST /courses/{course_id}/lectures/{lecture_id}/upload-audio

●​ Purpose: Uploads an audio file for a specific lecture
●​ Request: Multipart form data containing the audio file
●​ Response: Returns the updated lecture object with processing status

4. GET /lectures/{lecture_id}

●​ Purpose: Retrieves details for a specific lecture
●​ Response Example:

5. DELETE /lectures/{lecture_id}

●​ Purpose: Deletes a specific lecture
●​ Response: Confirmation of successful deletion

6. GET /lectures/{lecture_id}/chat

●​ Purpose: Creates a new chat session for a specific lecture
●​ Response: Returns a newly created chat ID
●​ Status Code: 201 on success

7. GET /chat/{chat_id}

●​ Purpose: Retrieves all messages for a specific chat session
●​ Response: Returns an array of message objects
●​ Status Code: 200 on success, 404 if chat not found

8. POST /chat/{chat_id}

●​ Purpose: Adds a new message to a chat session and triggers AI response​

●​ Response: Confirmation of message addition
●​ Status Code: 201 on success, 400 if message data is invalid, 404 if chat not

found
●​ Note: For the first message in a chat, the lecture summary is automatically added

as context

9. DELETE /chat/{chat_id}

●​ Purpose: Deletes a specific chat session and all its messages
●​ Response: Confirmation of successful deletion
●​ Status Code: 200 on success, 404 if chat not found

10. PUT /lectures/{lectureId}/validate-notes

●​ Purpose: Updates a lecture with instructor-validated notes, marking the content
as reviewed and approved for student consumption.

●​ Request Example: lectureId in the URL params and request body

●​ Response:

​

●​ Status Code: 200 on success, 400 Bad Request if no notes or missing lecture

Implemented vs. Planned Features

Currently Implemented:

●​ Basic course and lecture management
●​ Audio file upload functionality
●​ Transcription of lecture audio using Whisper
●​ Basic text summarization of transcripts
●​ Mobile UI for browsing courses and lectures
●​ Study note generation from transcripts
●​ End-to-end chat functionality
●​ User authentication
●​ Instructor validation of summaries

Code Review

Project Structure
.
├── Backend # Flask + Celery + Whisper + Perplexity/Gemini
│ ├── app.py # Lightweight (fail-fast backend; defunct)
│ ├── celery-app.py # Production-grade backend with background tasks
│ ├── ai_agent.py # LangChain Perplexity/Gemini-based note generator and chatbot
│ ├── Transcription/ # Whisper-based transcription
│ ├── uploads/ # Audio file storage
│ └── requirements.txt # Backend dependencies
│
├── InstructorUI # React + MUI web app
│ ├── src/pages/ # Pages like CoursesDashboard, LectureReview
│ ├── src/components/ # Upload, Layout, ProtectedRoute
│ ├── contexts/ # Firebase AuthContext
│ ├── services/ # API service hooks
│ └── App.tsx # Route + Theme setup
│
└── StudentUI # React Native mobile app
 ├── components/ # Screens (Course, Lecture, Chat, Notes)
 ├── utils/ # Styles, constants, fetch/upload logic
 ├── index.tsx # Navigation stack and auth listener
 └── app.json # Expo config

Code Structure and Interaction Patterns

Platform Synchronization

Both the Instructor (web) and Student (mobile) platforms are unified via a shared Flask
backend exposing consistent REST API endpoints. These endpoints support CRUD
operations on courses and lectures, upload and processing of audio files, and chat
interactions.

●​ Instructor validations through the web app are reflected on the student mobile UI
in real time via polling or re-fetching.

●​ Lecture states (e.g., IN_PROGRESS, COMPLETED, VALIDATED) drive the user
experience on both platforms without duplication of logic.​

State Management and UI Reactions

StudentUI (React Native):

●​ Uses React hooks to manage asynchronous state during lecture uploads,
transcription progress, and chat interactions.

●​ Implements rollback logic: if a file upload fails or exceeds timeout limits, the
orphaned lecture is deleted from the backend using deleteLecture().

●​ The LecturesScreen and LectureDetailsScreen conditionally render AI-generated
summaries and initiate Q&A sessions using lecture-specific context.​

InstructorUI (React + MUI):

●​ Uses controlled form components for editing AI-generated content.
●​ Validation and edits are submitted via PUT requests to the backend. The lecture

is marked as VALIDATED and updated for all clients.
●​ Instructors have access to a real-time Markdown-rendered preview alongside

editable fields.​

Backend Design and Task Offloading

●​ transcribe_audio_task and generate_notes_task are chained to ensure that
downstream processes only start after upstream results are available.​

The backend is structured to handle CPU heavy tasks like transcription asynchronously
using Celery workers communicating over Redis Server:

●​ Long-running tasks use retries and backoff strategies for stability.
●​ Validation APIs (PUT /lectures/{lectureId}/validate-notes) update records with

instructor-edited summaries and transition content into a student-visible state.​

Error Handling and Resilience

●​ The mobile app ensures atomic transactions: lecture records are only finalized
upon successful audio upload and processing.

●​ Both platforms check processing status via polling (GET /lectures/{lectureId}),
enabling the frontend to reactively show loading indicators or completed content.

Interesting Code Snippets:

1. Asynchronous Task Processing with Celery and Redis

To avoid blocking the main Flask application during resource-intensive operations such
as transcription and note generation, long-running tasks are delegated to background
workers via Celery, using Redis as the message broker and result backend.

Example: transcribe_audio_task

Design Highlights:

●​ @celery.task decorator with bind=True allows retries on failure using self.retry(...).
●​ Transcription and summarization logic is encapsulated in a background context to keep

request-response latency low.
●​ Redis provides a lightweight, fault-tolerant queue system for asynchronous execution.
●​ Task chaining (generate_notes_task.delay(...)) supports multi-phase pipelines without

additional orchestration.​

2. Drop-in LLM Integration via AIAgent Abstraction

The AIAgent class abstracts interaction with language models, making it easy to switch between
providers (e.g., Gemini, OpenAI, Perplexity) while maintaining consistent behavior across the
application.

Example: AIAgent Implementation

Design Highlights:

●​ Provider-agnostic design allows for seamless migration between LLM APIs.
●​ Prompts are decoupled and reusable across multiple agents and tasks.
●​ Supports different usage contexts (note generation, chat responses) with tailored

prompts.
●​ Enables prompt-level experimentation without modifying business logic or API routes.​

3. Robust File Upload with Timeout and Rollback

To ensure a seamless user experience and maintain backend data integrity, the
frontend implements timeout-aware audio upload logic. If the upload fails or exceeds the
configured duration, the partially created lecture is automatically deleted—preventing
orphaned records and avoiding confusion for the user.

Frontend: Upload Handler with Rollback

File Upload Utility: Timeout Enforcement

Key features:

●​ Upload is executed as a background session via expo-file-system, improving
performance on mobile devices.

●​ Timeout logic uses Promise.race(...) to enforce a hard limit on upload duration.
●​ On failure, deleteLecture(...) is invoked to roll back the orphaned lecture record.
●​ Ensures atomic UX flow—users never see lectures without transcripts,

summaries, or audio.

Why this matters:​
 It's a textbook example of fail-fast recovery with separation of concerns—upload logic is
isolated and resilient, while the user interface remains responsive and trustworthy.

4. Multi-State Summary Validation Workflow with Live AI + Instructor Edits

The lecture review system implements a hybrid AI + human validation pipeline.
AI-generated summaries are editable in-place, and instructors can commit their
reviewed versions, shifting the lecture into a VALIDATED state.

Example: Summary Validation Logic

<Button

 variant="contained"

 color="primary"

 onClick={handleSaveAndValidate}

 disabled={isSaving || lecture.is_validated}

>

 {isSaving ? 'Validating...' : lecture.is_validated ?
'Summary Validated' : 'Save & Validate Summary'}

</Button>

Why it’s interesting:

●​ Summaries move through states: NOT_STARTED → IN_PROGRESS →
COMPLETED → VALIDATED, tracked and shown with MUI chips.

●​ TextField lets instructors override AI output, but only once the AI pipeline finishes.
●​ Integration with notistack gives instant, non-blocking UI feedback.
●​ Instructors always have a live side-by-side view of the raw transcript, AI notes

(rendered via marked), and their editable version — a full-feedback loop.

This approach enables a human-in-the-loop review flow that’s production-grade,
transparent, and extensible — not just a static form.

Value Proposition Canvas

The problem statement concerns two groups of actors, the students and the educators.
The students’ jobs include writing down notes for their lectures and reviewing key topics
after the class. The educators’ jobs include improving student engagement and

comprehension and providing better support for learning. A few pain points that
students face are that it is difficult to listen to class and write notes simultaneously, often
ending up with incomplete notes that make it difficult to revise. Educators, on the other
hand, spend a lot of time answering repetitive questions from students and have
difficulty keeping track of the exact details of what is being taught in class. Through a
solution to this problem, students will be able to have a readily available reference to
revise and educators will be able to engage their students better.

Solution approach 1 provides AI-driven notes and Q&A, which help students revise the
content better. It reduces the stress of taking notes during the lecture, thus improving
engagement in class, and reduces the time spent by educators in answering repetitive
questions. Solution approach 2 provides a community-driven annotation, editing and
communication platform that improves the quality of the notes and further encourages
students to engage with the content. Solution approach 3 provides an AI-powered
chatbot trained on the materials approved by the professor. This maintains the quality of
the notes, at the same time making it more tailored towards the specific needs of
students for that topic.

Business Model Canvas

Classmate AI is an AI-powered platform that enhances classroom experiences for both
students and educators. By offering features like automatic transcription,
summarization, and contextual chat, it delivers a clear value proposition: helping
students stay focused and engaged, while reducing repetitive tasks for educators.

Students gain access to AI-generated notes and summaries, reducing the need for
manual note-taking and allowing them to stay more engaged during lectures. They can
revisit material through contextual chat, prepare more efficiently for exams, and benefit
from a self-service experience that adapts to their learning pace. A freemium pricing
model ensures accessibility, with optional upgrades to access more advanced AI
features.

Educators benefit from having fewer repetitive queries, as students can independently
access key lecture content. They can also review, edit, and enhance AI-generated
summaries before publishing them to all course participants, ensuring that shared
content aligns with their intended message. The platform integrates smoothly into daily
workflows through an intuitive interface, supported by direct help channels and ongoing
platform development.

Feature Analysis
Completed features

Ra
nk

Feature User
Role

Use
Case

Relationshi
p to Other
Features

VPC
Alignment

BMC
Alignment

1 Audio
Transcription

Studen
t/Educ
ator

Note
taking

Feeds into
AI
note-taking
and Q&A

Automaticall
y generate
notes to
save time
and effort

Key
Activities
(Platform
development
, AI model
integration)
Key
Resources
(AI models)
Channels
(Mobile app)

2 AI-based
Note taking

Studen
t/Educ
ator

Note
taking

Feeds into
Q&A

Have readily
available
summaries
for reference

Key
Resource(AI
model)
Key Partner
(AI
companies)
Channels
(Mobile app)

3 Q&A with AI
model

Studen
t

Clarifying
doubts

Works
alongside
transcription
and
note-taking

Reduce time
spent on
repetitive
questions
Improve
engagement
by focusing
on
discussions

Revenue
streams
(Premium for
better AI
models)
Key Partner
(AI
companies)
Channels
(Mobile app)

4 Saving chats

as notes
Studen
t

Note
taking

Supports the
AI-powered
Q&A by
providing
more inputs

Have readily
available
summaries
for future
reference

Key
Resource(Pl
atform)
Channels
(Mobile App)

5 Editing and
enhancing
instructor-pr
ovided notes

Educat
or

Note
taking/
clarifying
doubts

Enhances
the AI
generated
notes

 Key
Resource(Pl
atform)
Channels
(Web app)

Future plan

Ra
nk

Feature User
Role

Use
Case

Relationshi
p to Other
Features

VPC
Alignment

BMC
Alignment

1 Interactive
LearningTool
s

Studen
t

Reinforci
ng
learning
through
practice

Uses
AI-generated
notes and
transcripts
for content

Improve
student
engagement
by focusing
on learning
rather than
note-taking

Revenue
Streams
(Premium
plans for
tools and
insights)
Key
Resource
(Platform)

2 Customizatio
n & User
Control

Studen
t/Educ
ators

Tailoring
notes to
personal
preferen
ce

Improves
usability of
all features

Enhance
user
experience
and flexibility

Revenue
Streams
(Premium for
insights)
Key
resource
(Platform)

Channels
(Mobile app)

3 Offline
Support

Studen
t/Educ
ator

Studying
without
internet

Enables
interactive
learning
tools and AI
summarizati
on offline

Improve
accessibility
and usability
in
low-connecti
vity
environment
s

Revenue
Streams
(Premium
pricing for
offline
access) Key
Resource(Pl
atform)

Biggest Concerns
Concern Potential Solutions

Does the MVP improve
student engagement with
lecture content compared to
traditional methods?

Metrics: Time spent reviewing notes, engagement
with Q&A, and task completion rates - obtain
analytics over larger time durations (1 or 2 months)

Scalability of AI
transcription?

Use Edge AI models where feasible,and reduce
API dependency for cost savings.

Costs of AI model API calls Try experimenting with OLLAMA on smaller models
before moving to the API of a larger model.
Experiment with ChatGPT from their free
application with manual prompts to gain confidence
in the instructional prompting techniques.

Expansion and Rollout Try rolling out the app to a select few courses and
students and obtain analytics on signups and
engagement.

Insights from User Testing and Analytics

We tested the following metrics by asking 10 students to use the Classmate AI app, and
collected usage data based on their interactions.

Test 1: Q&A Usage

Objective:

Identify the recurring types of questions and volume of usage to assess the value of the
Q&A feature.

Data Collected:

●​ Total questions asked per lecture (avg): 5.4 questions
●​ Participants: 10 students
●​ Question type categories (based on manual tagging):

○​ Clarification of concepts: 42%
○​ Summary/explanation requests: 33%
○​ Related topic questions: 18%
○​ Assignment/help-based: 7%

Key Insight:

●​ The Q&A feature is highly used, with an average of over 5 questions per lecture,
showing strong engagement.

●​ The majority of queries are concept clarification, suggesting users rely on Classmate
AI as a real-time teaching assistant.

●​ There's potential to pre-populate common doubts in future versions to reduce
repetitive questions and speed up support.

Test 2: Drop-Off Analysis

Objective:

Determine when users are leaving the notes/Q&A screens and why.

Data Collected:

●​ Average time before exit: 2 minute 18 seconds
●​ Average scroll position at exit: 72%

Key Insight:

●​ Most users engage deeply but do not reach the end of the lecture content.
●​ Drop-offs after 72% may indicate:

○​ Summaries are too long
○​ Users may get what they need before finishing
○​ Less critical info is placed later in the notes

Actionable Next Steps:

●​ Introduce “Quick Summary” at the top
●​ Use collapsible sections or Table Of Contents - based navigation
●​ Explore content prioritization strategies based on user scroll heatmaps

Overall Takeaways:

●​ Q&A is sticky and valuable — could make it more proactive (suggested questions, hot
topics).

●​ Scroll-based drop-offs hint at optimization opportunities in UI/UX and content structure.

We conducted A/B testing on two different features in this sprint. For each feature, we tested
with a total of 20 students from different academic backgrounds.

Experiment Setup -

Test 1: Note Structure Layout

Objective: Determine whether paragraph-style notes or bullet-point structured notes
enhance readability and retention.

User Assignment:

●​ Group A (10 students): Shown paragraph-style notes
●​ Group B (10 students): Shown bullet-point notes with highlights

Metrics Collected:

●​ Time Spent on Notes Page (TNP)
●​ Scroll Depth (SD) (how much of the notes users read)
●​ Bounce Rate (BR) (how many users left immediately)

Test 2: Q&A Interface Placement

Objective: Evaluate whether an integrated Q&A panel or a separate Q&A tab leads to higher
engagement.

User Assignment:

●​ Group A (10 students): Q&A panel on a separate tab.
●​ Group B (10 students): Q&A panel embedded alongside the notes

Metrics Collected:

●​ Q&A Engagement Rate (QER) (how many users asked a question)
●​ Response Time (RT) (time taken to receive an answer)
●​ User Satisfaction Score (USS) (feedback from a 5-star survey)
●​ Session Duration in Q&A (SDQ)

Quantitative Results Collected

Metric Group A (Paragraph Notes) Group B (Bullet Notes)

Time Spent on Notes (TNP) 5m 32s 7m 49s (+41%)

Scroll Depth (SD) 74% 91% (+23%)

Bounce Rate (BR) 22% 11% (-50%)

Bullet-point notes outperformed paragraph notes in time spent, comprehension, and
retention.

Metric Group A (Seperate Q&A
Tab)

Group B (Integrated Q&A)

Q&A Engagement Rate
(QER)

37% 19% (-49%)

Response Time (RT) 1m 12s 2m 45s (+137%)

User Satisfaction Score
(USS)

4.3 / 5 3.7 / 5 (-14%)

Session Duration (SDQ) 3m 24s 2m 10s (-36%)

Seperate Q&A panel led to significantly higher engagement and faster response times
compared to the integrated tab.

As part of our Sprint 3 user testing, we allowed students to interact with the
prototype app for Approach 1, which took a lecture recording and generated
structured notes from it. After using the prototype, students participated in interviews
and surveys to share their feedback.

Participants:

●​ 20 students from different disciplines (CS, Business, Psychology, Engineering).
●​ 5 TAs reviewed AI-generated summaries for accuracy.

Test Setup:

1.​ Students provided a lecture recording (20-45 minutes) from one of their
classes.

2.​ The AI-generated structured notes, summarizing key points, definitions, and
takeaways.

3.​ Students compared AI-generated notes to their own manual notes.
4.​ TAs evaluated AI-generated summaries for completeness and correctness.

Updated Survey Data After Prototype Testing

Survey Question Before Using
the Prototype

After Using the
Prototype

Change
(%)

Would you use an AI-generated
note summarization tool?

82% 91% +9%

Do you struggle to take notes
while listening?

72% 72% No
change

Would AI-generated summaries
help you review for exams?

78% 88% +10%

Did the AI summaries reduce your
study time?

Not Asked 73% said Yes New
Data

Would you prefer AI-generated
summaries over manual notes?

64% 85% +21%

Do you trust AI-generated notes
without human validation?

43% 58% +15%

Key Takeaways:

●​ User adoption increased after using the prototype—confidence in
AI-generated notes improved.

●​ Students preferred AI summaries for revision, especially when structured
properly.

●​ Trust in AI-generated notes increased (from 43% to 58%), but instructor
validation is still necessary for full trust.

TA Feedback After Reviewing AI Summaries

Evaluation Criteria TA Rating (%)

Accuracy of AI-generated summaries 88%

Completeness (capturing all key points) 82%

Context Preservation 74%

Usefulness for students 90%

Would recommend for student use? 80% (Yes)

TA Comments:

●​ “The AI summaries were well-structured but missed some nuances and
examples.”

●​ “If students rely only on AI summaries, they might lose deeper
understanding—combining AI with instructor-verified notes would be best.”

●​ “The technology is promising. If I could edit and approve these summaries for my
students, I would definitely use it.”

AI Trust Verification in ClassmateAI
ClassmateAI prioritizes delivering accurate and contextually relevant AI-generated study
materials while maintaining a seamless user experience. To avoid overwhelming
students with technical details, the app does not display explicit source references
within the interface. However, to ensure the reliability and factual grounding of AI
responses, the development team rigorously reviews and audits source attributions
by modifying the Perplexity API during internal testing and evaluation phases.

Trust Verification Metrics
To measure and maintain trust, ClassmateAI employs a set of quantifiable metrics:

Metric Result Benchmark Methodology

Factual
Accuracy 88% >85%

Manual verification of 100 responses
against lecture transcripts

Source
Attribution 87% >80%

% of claims with perplexity’s references to
lecture content

Context
Relevance 89% >85%

% of responses that directly address the
question using context

Hallucination
Rate 4% <5%

% of statements not supported by lecture
material

Perplexity Sonar benchmarks

Our application utilizes Perplexity Sonar models, which have proven to be
high-performing large language models, especially in the areas of search-augmented
reasoning and factual answer generation. In recent independent evaluations, Sonar
consistently ranked at or near the top compared to leading models from Google and
OpenAI. For example, in the LM Arena Search Arena leaderboard,
Sonar-Reasoning-Pro-High achieved an Arena Score of 1136, statistically tied for first
place with Google’s Gemini-2.5-Pro-Grounding, and outperformed all of OpenAI’s web
search models. These benchmarks highlight Sonar’s strengths in factual accuracy,
answer quality, and user experience, making it a reliable choice for applications where
trust and speed are critical.

Future Testing Approaches

To further strengthen AI trust verification, we plan to implement

1.​ Expanded Test Dataset: Create a comprehensive set of questions with known
answers from lecture content to systematically evaluate response accuracy.

2.​ Comparative Model Testing: Benchmark Perplexity Sonar against other LLMs
(GPT-4, Claude) to identify relative strengths and weaknesses in educational
contexts.

3.​ Automated Fact-Checking: Develop algorithms to automatically verify response
claims against lecture transcripts, reducing the need for manual verification.

4.​ Real-Time Confidence Indicators: Implement visual indicators in the chat
interface showing confidence levels for different parts of each response.

By continuously improving our trust verification framework, ClassmateAI will maintain its
commitment to providing accurate, reliable, and trustworthy AI assistance for students.

Learning Prototype Plan
For sprint 5, the learning prototype plan will focus on delivering a working end-to-end
prototype that is tested with real users. The goal is to have a functional product that
includes the core features, gathers quantifiable user feedback, and prepares for early
adopter use cases. We also plan on creating a web-based version of the application.

Hypothesis Testing Areas
●​ Hypothesis 1: Students using AI-generated and instructor-validated notes will be able to

review and retain lecture content faster compared to students using traditional
handwritten notes.

●​ Hypothesis 2: The separate Q&A tab will result in better task completion rates and
higher engagement compared to the integrated Q&A panel.

●​ Hypothesis 3: Gamification elements (points, badges) will drive higher engagement in
reviewing notes and interacting with the AI-powered Q&A.

Testing Plan:

The testing should focus on how the MVP performs across different user segments and
environments.

Testing Methods:

1.​ Usability Testing:
○​ Goal: Ensure the MVP is user-friendly and intuitive.
○​ Method: Ask users to complete specific tasks (e.g., review notes, ask a

question in the Q&A, mark notes).
○​ Metrics: Task completion rate, time spent on tasks, satisfaction rating.

2.​ Engagement Testing:
○​ Goal: Measure user engagement with the notes and Q&A system.
○​ Method: Track usage of notes and Q&A (e.g., how often users ask

questions, how long they spend reviewing notes).
○​ Metrics: Engagement rate, time spent, frequency of Q&A usage.

Key Questions to Answer in Sprint 5:

1.​ Does the MVP improve student engagement with lecture content compared
to traditional methods?

○​ Metrics: Time spent reviewing notes, engagement with Q&A, and task
completion rates.

2.​ How does the real-time Q&A feature affect students' learning and

satisfaction?
○​ Metrics: Number of questions asked, accuracy of AI responses, user

feedback on Q&A helpfulness.

Future direction:

Launching the app:

Phase 1: Private Beta Launch (Weeks 1–4)

Goal: Validate real-world use and gather actionable feedback from a small, controlled
user base.

●​ Target Users:
○​ 2–3 university courses (ideally one technical, one non-technical)
○​ Instructors open to tech adoption + their enrolled students

●​ Deliverables:
○​ End-to-end working app (lecture upload → AI summary → instructor

review → student Q&A)
○​ Instructor dashboard to publish validated notes
○​ Usage analytics and bug reporting

●​ Feedback Loop:
○​ Weekly check-ins with pilot users
○​ Surveys and analytics to assess satisfaction, trust in AI summaries, and

engagement rates

Phase 2: Campus-Wide Pilot (Weeks 5–8)

Goal: Test scalability and broader user dynamics.

●​ Partnership:
○​ Collaborate with university teaching & learning centers or CS/EdTech

departments
○​ Offer onboarding sessions or TA-facilitated demos

●​ Support:
○​ Setup onboarding docs and in-app tooltips
○​ Provide live email/Discord support

Phase 3: Public Launch (Weeks 9–12)

Goal: Open app to broader users (multi-institution or public use).

●​ Marketing Channels:
○​ Launch on Product Hunt, Reddit EdTech groups, LinkedIn, and university

forums
○​ Publish blog posts/case studies from beta courses

●​ Freemium Model Rollout:
○​ Free tier: core AI summaries and Q&A
○​ Premium tier: advanced AI models for AI summaries and Q&A

