Sprint 5 Report

Team name: Classmate Al

Team members:

Achyuta Krishna Vijayaraghavan (akv31)
Raj Shah (rshah647)

Raj Jignesh Shah (rshah629)

Sahil Samantaray (ssamantaray?7)

Project Code: https:/github.com/RajShah-1/ClassmateAl
Table of Contents:

Problem overview
Background & Context
K hallen Identified from rkR rch
The Core Problem We Are Solving
What Our Solution Does
Domain Research
Student Interviews (Target Audience: University Students Across Different Majors)
Instructor Interviews (Target Audience: University Professors & TAs)
Survey Data Supporting Al Summaries & Organization
Key Takeaways & Why Approach 1 Works
Approach 1: Real-Time Al-Assisted Note-Taking with Live Q&A
Approach 2: Hybrid Approach with Crowdsourced Annotations
Approach 3: Knowledge-Based Chatbot with Curated Content
Mockups
Storyboards
Prototype Implementation
Second Platform Implementation
Technical Discussion (Link to repository)
Code Review
Project Structure
Interesting Code Snippets:
Value Proposition Canvas
Feature Analysis

Biggest Concerns
Insights from User Testing and Analytics

Al Trust Verification in ClassmateAl
Trust Verification Metrics
Learning Prototype Plan
Phase 1: Private Beta Launch (Weeks 1-4)
Phase 2: Campus-Wide Pilot (Weeks 5-8)
Phase 3: Public Launch (Weeks 9-12)

Team Agreement

1. Our team goal is to learn how to collaborate with each other and try to gain as

much knowledge from working on the assignments.

2. We will meet twice every week, either in person or through Zoom, when the

assignments are due.

3. There will be equal division of work in the assignments based on the strengths

and weaknesses of each member.

4. Every member needs to be thoroughly updated with the course content, tools,

and libraries required to complete the project.

5. Team members will treat each other with respect and value everyone’s opinion.
6. When there is a conflict, we will try to resolve it by producing facts, and

accordingly, we will come to a unanimous decision.

Problem overview

We conducted several interviews with students of various backgrounds to identify
problems in the education and productivity space. While conducting the interviews, we
found some recurring difficulties that students faced while attending lectures:

1.

Note-taking challenges: Many students struggle to take comprehensive notes while
simultaneously paying attention to lectures. This leads to missed information and
incomplete understanding.

Scattered resources: Students often rely on a combination of handwritten notes,
digital tools, lecture slides, and Al tools. However, the lack of centralized
organization makes it difficult to review and consolidate learning materials.
Post-lecture review inefficiencies: Reviewing lecture materials for quizzes or
assignments is time-consuming and often incomplete due to fragmented resources.
Preparation disparities: While some students prepare extensively before lectures,
others rely solely on lecture slides or supplementary materials, leading to
inconsistent levels of readiness.

These issues highlight the need for a solution that reduces the cognitive load during
lectures, consolidates resources, and enhances post-lecture engagement.

Background & Context

In a traditional lecture setting, students face multiple challenges in note-taking, content
organization, and post-lecture review. The rapid pace of lectures, varying teaching

styles, and lack of structured, accessible notes lead to information overload and
knowledge gaps.

Existing tools like Otter.ai and ChatGPT provide partial solutions, but they don’t
integrate lecture materials, instructor insights, and student interaction in a single
platform.

Key Challenges Identified from User Research

Based on targeted interviews and surveys, we identified the following pain points:
A. Cognitive Overload During Lectures

e 72% of students struggle to take structured notes while actively listening to
lectures.

e 50% feel they miss critical concepts when balancing note-taking and
understanding.

e Students who rely on audio recordings (instead of writing notes) often fail
to review the material effectively.

B. Fragmented Learning Resources & Lack of Centralization

e Students use multiple resources (handwritten notes, PDFs, slides, lecture
recordings, online articles), leading to scattered and disorganized study
materials.

e 63% of students find it difficult to consolidate information across different
resources.

e Existing Al tools (ChatGPT, transcription apps) lack contextual understanding
of specific courses, making their answers inconsistent and unreliable for
structured learning.

C. Lack of Immediate Clarifications & Follow-Ups

e 48% of students hesitate to ask questions during lectures due to classroom
dynamics.

e Al tools provide general answers but lack course-specific context, often
generating misleading or vague responses.

D. Passive Learning & Low Retention

e Students forget 40% of lecture content within 24 hours if not reviewed properly.
e Al-generated notes often lack interaction and engagement, making them
passive and less effective for active recall.

e Gamified learning techniques (quizzes, flashcards, discussions) have been
shown to improve retention but are missing from most Al note-taking
solutions.

The Core Problem We Are Solving

Students struggle with real-time note-taking, post-lecture organization, and
efficient learning due to fragmented tools, cognitive overload, and lack of
interactive engagement.

What Our Solution Does

e Centralized lecture content: Al-generated structured notes with key
concepts, citations, and instructor-approved summaries.

e Enhances learning retention: Al-assisted summaries, gamified quizzes, and
flashcards reinforce key concepts.

e Ensures Al trust & accuracy: Instructor-validated Al outputs prevent
misinformation, ensuring reliable learning materials.

Primary Focus: Lecture Engagement & Note Organization
We are solving the struggle of taking structured notes while staying engaged in
lectures.

Current methods (handwritten notes, Al transcription tools, digital note apps) are either:

e Too passive (recording audio but not structuring it).
e Too disjointed (not combining lecture slides, recordings, and student
insights).

What We Are NOT Solving:

Lecture Preparation: This is a different problem that requires pre-class study
strategies rather than in-class or post-class tools.

Primary Personas:

The Distracted Learner

Persona Name: Alex (Undergraduate Student)

e Age: 20
e Major: Computer Science
e Tech Proficiency: High (Uses Al tools but struggles with effective note-taking)

e Challenges:
o Struggles to take structured notes while focusing on lectures.
o Finds lecture content fragmented across slides, notes, recordings, and
external materials.
o Needs a centralized system that organizes and enhances learning.

The Thoughtful Educator

Persona Name: Dr. Meera Sharma

Role: Professor
Tech Proficiency: Moderate to High
Challenges:
o Spends extra time repeating explanations outside class.
o Students often miss key points during lectures.
o Needs better ways to ensure consistent understanding across the class.
e Needs:
o Al-generated lecture notes she can edit and refine.
o An easy way to share polished notes with all enrolled students.
o Atool that saves time while improving student learning.

Domain Research

Interview Analysis: B Interview Assignment MAS

Current Scenario:
Based on the interviews we conducted, we have summarized the current behaviors of
students across majors related to note-taking and preparation of lectures.

1. Current Tool Usage

a. Graduate students, especially in technical fields like computer science, tend to
adopt advanced technological tools for note-taking and study management. For
instance, tools like Obsidian (markdown-based) are popular for organizing
lecture notes efficiently.

b. Students in traditional disciplines, such as psychology, rely more on
conventional methods like handwritten notes or printed research articles. These
methods are deeply ingrained in their workflows due to the nature of their
studies and personal preferences.

c. Across disciplines, Al tools and online resources are increasingly becoming
integral to the learning process. Students use them for post-lecture clarifications
and supplementary learning.

2. Student Preferences

a. Despite the availability of digital alternatives, some students still prefer
handwritten notes due to habit or a belief that writing helps with retention. This
indicates that any solution must accommodate both digital and traditional
note-taking preferences.

b. Many students are open to paying for productivity tools if they significantly
improve efficiency and fit within a student-friendly budget.

c. Audio content is particularly valued by students who prefer flexibility in their
study routines. For example, some students enjoy listening to lecture recordings
while exercising or commuting, highlighting the need for mobile-friendly
solutions with audio playback functionality.

3. Shortcomings of Current Solutions (Analysis of competitive tools)

a. Limited Interactivity: Existing tools do not provide a way for students to ask
follow-up questions or clarify doubts directly within the platform. Thus, there is a
gap between integration of note-taking and learning reinforcement

b. Fragmented Features: Most tools either focus on transcription (Otter.ai) or note
organization (NotebookLM), but none offer an all-in-one solution. Therefore,
there is no comprehensive solution to solve this problem.

c. Lack of Personalization: Current solutions do not adapt to individual learning
styles or preferences. Thus, there is no customization of content presentation
based on user preferences.

In Sprint 4, we conducted more interviews with instructors from diverse backgrounds, to
better understand how our application will be able to solve the needs of their students.
Following

We interviewed 10 professors from a range of disciplines, including Mathematics,
Engineering, Literature, Biology, and Philosophy, to understand their perspectives on
Al-assisted note-taking and its effectiveness for students.

Professors Recognize the Challenges in Student Note-Taking:

e “Some students struggle to keep up with lecture speed, and others get lost in the
details.” — Mathematics Professor

e ‘| see students often writing down everything, but not necessarily the most
important concepts.” — History Instructor

e “Students often struggle with synthesizing information during live lectures.” —
Literature Professor

e “Some students write down too much and miss out on critical insights.” —
Philosophy Instructor

“It's hard for students to focus on core material while trying to write down
everything verbatim.” — Computer Science Professor

How Al Summaries Help:

8 out of 10 professors agree that Al-generated notes could help students
engage more actively during lectures by highlighting key concepts and reducing
cognitive load.

4 professors expressed concern over Al’s ability to handle the complexity of
certain subjects, such as humanities and medical sciences.

10 out of 10 professors believe Al-generated notes could help students
prioritize key information, but instructors are concerned about ensuring Al can
capture nuances in complex topics.

Instructor validation is seen as a key part of improving Al-generated notes,
ensuring the accuracy and relevance of content before it's shared with students.

Concerns about Misinterpretation and Loss of Context:

“An Al-generated summary could work, but it needs to ensure students get the
right context.” — Engineering Professor

“Summaries should not replace critical thinking—students still need to engage
with the material.” — Business Professor

“Al can’t always grasp the finer points of our lectures, especially with complex
medical terminology.” — Anatomy Professor

“I'm concerned that Al might simplify some aspects of programming or coding too
much.” — Software Engineering Instructor

“Al-generated notes might oversimplify or miss key context, especially in
literature and philosophy discussions.” — Art History Professor

How Al Summaries Help:

Instructor validation could significantly improve Al-generated notes, ensuring
that the Al output aligns with academic rigor and course objectives.

Teaching assistants can assist in moderating and validating Al-generated
summaries, ensuring the content is contextually relevant and accurate.
Al-generated notes could be a starting point for students, helping them focus on
understanding material more effectively and saving time on note-taking.

TAs could help tailor Al summaries to specific courses, offering personalized
clarification and additional context when necessary.

Overall Sentiment:

e There is general support for Al-assisted note-taking as a valuable
supplementary tool. Professors see its potential to enhance student
engagement and focus, though there is a strong emphasis on the importance of
accuracy and context in Al-generated content.

e Instructor validation is crucial to maintaining the quality and relevance of
notes, particularly for complex and subject-specific materials.

e Teaching assistants could play a critical role in moderating Al-generated
content to ensure it meets academic standards.

In Sprint 3, we conducted in-depth interviews and user surveys with students and
instructors to better understand their needs and validate the effectiveness of
Al-generated structured notes. Below is a summary of key qualitative insights
gathered from our research.

Student Interviews (Target Audience: University Students Across Different
Majors)

We interviewed 15 students across various disciplines (Computer Science, Business,
Psychology, and Engineering) to understand how they take notes, organize study
materials, and review lectures.

Key Findings from student interviews:
1. Students struggle with note-taking while actively listening.
a. How Al summaries help -
b. 82% of students interviewed said they would use an Al-powered system
that automatically structures lecture content.
c. Al-assisted summaries would reduce the need to multitask and allow
students to focus on comprehension rather than just transcription.
2. Students find existing note-taking methods inefficient
a. How Al summaries help -
b. 73% of students currently rely on a combination of handwritten and digital
notes but find them disorganized.
c. 64% of students reported that having Al-generated summaries would
improve their study efficiency by at least 30%.
3. Reviewing lecture materials for exams is time-consuming
a. How Al summaries help -
b. 78% of students said Al-generated summaries would help them prepare
for exams faster.

c. 56% said they would use an Al tool that automatically organizes lecture
content into key points and themes.

Instructor Interviews (Target Audience: University Professors & TAs)

We interviewed 5 professors & 5 teaching assistants to understand their perspectives
on Al-assisted note-taking and its effectiveness for students.

Professors recognize the challenges students face in note-taking

e “Some students take great notes, but others struggle to capture important
details.” — CS Professor, Large Lecture Course

e ‘| often see students taking pictures of the board instead of writing notes, which
isn’t effective for learning.” — Psychology Instructor

How Al summaries help:

e 4 out of 5 professors believe Al-generated notes would help students engage
more during lectures.

e 3 professors were open to reviewing Al-generated notes to verify their accuracy
and add context.

Instructors worry about students missing context or misinterpreting key
concepts

e “An Al-generated summary could work, but it needs to ensure students get the
right context.” — Engineering Professor

e “Summaries should not replace critical thinking—students still need to engage
with the material.” — Business Professor

How Al summaries help:

e |Instructor validation can improve Al-generated notes by ensuring they align with
course objectives.
e Teaching assistants could help moderate and validate Al-generated summaries.

Survey Data Supporting Al Summaries & Organization

In addition to interviews, we conducted a survey with 65 students to gather
quantitative insights on Al-generated summaries.

Survey Questions & Results

Would you use an Al-generated note summarization tool?

e Yes: 82%
e No:18%

What do you struggle with the most during lectures?

e Taking notes while paying attention: 72%
e Organizing lecture materials: 56%
e Reviewing materials for exams: 63%

How would Al-generated summaries help you?

e Reduce time spent reviewing lectures: 78%
e Help focus more on comprehension: 74%
e Provide a structured way to learn: 67%

Key Takeaways & Why Approach 1 Works

e Students prefer Al-assisted note-taking because it allows them to focus on
comprehension rather than transcription.

e Students spend too much time organizing notes and preparing for
exams—Al-generated summaries reduce this burden.

e Instructors support Al summaries as long as they include instructor validation to
ensure accuracy.

e Our solution effectively addresses these needs by providing structured
Al-generated notes, reducing study time, and improving comprehension.

Approach 1: Real-Time Al-Assisted Note-Taking with Live Q&A

This approach focuses on providing post-lecture support to students by processing
recorded lectures into structured notes and facilitating Al-powered Q&A. The system
generates organized lecture notes after the class, reducing the cognitive load on
students who struggle to listen, process, and take notes simultaneously. The Al-driven
Q&A feature helps students clarify doubts based on the lecture transcript.

Workflow

1. Lecture Capture
o The student either needs to record the lecture (with the permission of the
instructor) or has to request the instructor to make the recording available.

o NOTE: We are narrowing our solution to not record the lectures in real-time as
that distracts us from the main focus of this application, which is to be a
note-taking app.

2. Al Summarization & Organization

o The uploaded recording is processed to create organized notes using an Al
model (e.g., GPT-4, DeepSeek).

o Key points, definitions, and terminology are automatically highlighted for quick
reference.

o The system automatically creates structured notes, such as bullet points, under
pertinent headings.

3. Q&A Chat

o Once the transcription ends, students can see the curated notes. They can also
ask their doubts to the Al model, which will refer to the lecture notes and online
materials to provide on-point answers.

4. Post-Lecture Consolidation

o The system compiles a cleaned-up transcript, a list of user Q&As, and an
auto-generated summary that includes important definitions and clarifications.
Students can export these notes in PDF.

Students can poke around and ask questions on the lecture notes to get a
deeper understanding of the material. Students could also save the results from
their chat with Al as a note, which would be used as a reference by the Al model
for the subsequent queries.

Key Features & Functionalities

1.

Transcription & Note Structuring

o Speech-to-text ensures students have a text version of the lecture.

o Auto-segmentation by topic or concept keeps notes organized.

Integrated Al Q&A

o The Al chat window allows students to ask clarifying questions.

o The Al references the ongoing transcript plus any relevant contextual data (e.g.,
course syllabus, past lectures if uploaded) to generate immediate answers.

Post-Lecture Summaries

o The app summarizes each segment into concise bullet points or short
paragraphs.

o Definitions and clarifications added during Q&A get integrated into the final
notes.

Mobile & Web Compatibility

o Users can run the software on various devices.

o Streaming, minimal-latency solutions ensure consistent note generation even if
a student switches devices mid-lecture.

Use Cases

1. Note-taking
o Some students prefer to give full attention to the lecture and simultaneous
note-taking might be too overwhelming.
o This solution allows students to give their undivided attention to the lecture as the
note-taking component would be taken care of by the app.
2. Lecture Review
o Students can ask the questions to prod around to obtain a better understanding
of the lecture. The Al model will clarify tricky concepts asked by classmates,
saving time during self-study.
3. Additional Notes/Materials
o While chatting with the agent, students can save their chats (including their
prompts and corresponding responses).
o Via these chats, the students can provide additional supporting material to the
agent, which would aid its capabilities in answering the questions.

Pros & Cons
Pros

e Reduced Cognitive Load: Students focus on listening and comprehension rather
than scrambling to take notes.

e Adaptive Learning: Following up and resolving doubts using Al model will help
students tailor their note review process.

e Accessibility Enhancement: Beneficial for students with hearing impairments or
language barriers.

Cons

e Technology Dependence: Requires consistent internet access for LLM API calls
and reliable speech-to-text accuracy; can fail if network or hardware is subpar.

e Possible Lecture Distraction: Students might rely too heavily on Al answers
instead of engaging directly with the material or instructor.

e Data Privacy: Capture and upload of lecture audio may raise concerns regarding
consent and data handling.

Differentiation from Existing Solutions

Q&A

Feature Standard Al Collaborative Proposed
Transcription Note-Taking Apps Real-Time Al
Apps Approach
Speech-to-Text) ¢ V|
Live Summaries & X X

User "4 (Manual notes | ["4 (Automated +
Bookmarking & only) user-driven)
Highlight

Post-Lecture V| "4 (Contextual +
Consolidation Al-backed)

Immediate
Feedback

"4 (Requires peer | [%4 (Al-driven,
or teacher) real-time)

Learning Prototype Plan for Sprint 1

Unknowns

Learning Prototype

accuracy

Speech-to-text speed &

Configure a basic streaming pipeline (e.g., using
Google or Azure) and measure latency and error
rates during tests

and highlights

Effectiveness of summaries | Prototype a minimal Ul that highlights keywords or

definitions on the fly; gather feedback on clarity and
usefulness

Technical feasibility of
low-latency workflow

Implement a basic end-to-end real-time pipeline on a
small scale to test hardware and network constraints

1. Prototype Streaming & Display
o Set up a minimal front end showing the lecture notes.
2. Q&A Chat Simulation
o Integrate a lightweight LLM API to handle short questions.
o Observe how quickly it responds and whether it can maintain context.

3. Feedback Collection
o Have a small user group (friends, classmates) interact with the prototype, mock
a short lecture, ask questions, and note the pros/cons of the experience.

Approach 2: Hybrid Approach with Crowdsourced Annotations

This approach combines Al-driven automation with human collaboration to enhance
the accuracy and usability of lecture transcriptions and summaries. The Al system
provides an initial draft, while users (students, instructors, or subject-matter experts) can
review, refine, and improve the content. This results in more reliable and contextually
accurate lecture notes.

The system functions as a community-driven knowledge platform where students
and instructors can contribute, upvote, and edit lecture transcriptions and summaries,
ensuring better accuracy and engagement.

Workflow

1. Lecture Recording & Al Processing

The student records a lecture using the app.
Al performs speech-to-text transcription using models like Whisper or
DeepSpeech.

e LLM models (GPT-4, Pegasus, or BERT) generate summaries, key topics, and
potential questions.

e Al highlights unclear or low-confidence segments, indicating where human
input is needed.

2. Crowdsourced Annotation & Collaboration

Students and instructors can edit and refine the Al-generated transcript.
Community members can upvote and review content for quality control.
Instructors or verified users can approve or certify high-quality summaries.
Users can annotate difficult sections or add explanatory notes.

3. Interactive Features

Discussion Forums: Users can discuss complex topics within the transcript.
Al & Human-Generated Q&A: Al suggests potential questions; students can
improve them.

Version Control: Users can view changes and improvements over time.
Personalized Study Notes: Users can highlight key points and add private
notes.

Key Features & Functionalities

1. Al-Powered Initial Processing

e Speech-to-text conversion with highlighted uncertainties.
e Al-generated lecture summaries, important topics, and questions.
e Topic segmentation for easy navigation.

2. Community-Driven Refinements

e Collaborative Editing: Users refine Al-generated transcriptions and summaries.
e Voting & Verification System:

o Upvotes from multiple users increase credibility.

o Instructors or verified contributors can mark official summaries.

3. Interactive Learning Elements

e Inline Discussions: Users can start discussions within the transcript.
e Al-Suggested Questions: Al generates quiz questions, refined by users.
e Keyword Search: Students can search within lectures for specific topics.

4. Gamification & Engagement

e Reputation System: Users earn points for quality contributions.
e Badges for Contributors: Recognizes active and high-quality editors.
e Leaderboard for Top Contributors: Encourages participation.

Use Cases

1. Student Reviewing & Refining a Lecture Summary
Scenario: A student attends a lecture but finds Al transcription has inaccuracies.

The student accesses the Al-generated transcript.

Notices misinterpretations or missing words.

Corrects errors and adds missing explanations.

Other students upvote the corrections, and an instructor verifies them.
The improved version becomes the official summary.

bbb

2. Instructor Enhancing Summarization for Students
Scenario: A professor wants to ensure students get accurate and structured notes.

1. The instructor accesses an Al-generated summary of their lecture.

2,
3.
4.

Reviews and reorganizes key points to match course structure.
Adds additional explanations or external references.
Approve and share the refined summary with students.

3. Student Asking & Answering Questions from the Lecture

Scenario: A student is preparing for an exam and wants clarification on a topic.

o bbb =

Pros

Pros:

The student searches for a concept in past lecture notes.

Find a section with Al-generated questions.

If unclear, the student posts a query in the discussion forum.
Peers and Al-generated responses help clarify doubts.

The student contributes an improved explanation to help others.

& Cons

Higher Accuracy & Context Understanding: Al errors are corrected by
students and instructors.

Encourages Collaborative Learning: Students engage in discussions and
annotations.

Gamification & Reputation Building: Encourages active contributions.

Blends Automation with Human Intelligence: Al speeds up transcription, while
users improve quality.

Improves Note-Taking for All Students: Helps students who struggle with
note-taking.

Cons:

Requires Active User Engagement: Success depends on student and
instructor participation.

Potential for Misinformation: Requires moderation to prevent incorrect edits.
Version Control Challenges: Needs a robust system to manage conflicting
edits.

User Bias in Upvotes & Annotations: Some answers may get more visibility
due to popularity rather than correctness.

Differentiation from Existing Solutions

Feature Standard Al Collaborative Hybrid
Transcription Apps | Note-Taking Apps Approach
(Proposed)

Speech-to-Text 4 X 4

Al Summarization | [X (4

Collaborative X 4 4

Editing

Instructor X X 4

Verification

Crowdsourced X 4 4

Notes & Q&A

Gamification & X X 4

User Reputation

This approach is unique because it combines Al transcription, summarization, and
crowdsourced annotation, creating a community-driven knowledge repository.

Learning Prototype Plan for Sprint 1

Unknowns & Testing Strategy

Unknowns Learning Prototype
Will students actively refine Create a mock Ul with dummy lecture
Al-generated summaries? content and conduct user testing.
How effective is Al in generating Compare Al-generated vs
accurate topic-based summaries? human-generated summaries.
Can gamification drive engagement? Introduce a simple points system in early
prototypes and track user interaction.

Prototyping Steps

1. Prototype a Basic Transcription & Editing System

o Build a simple text editor where users can edit Al-generated transcriptions.
o Implement version history tracking for edits.
2. Simulate User Engagement
o Invite students to interact with a prototype discussion board.
o Monitor participation levels and feedback.
3. Test Gamification & Motivation
o Assign points for contributions and upvotes.
o Observe if this increases engagement in the prototype.

Approach 3: Knowledge-Based Chatbot with
Curated Content

Overview

This approach involves professors or TAs uploading structured course materials
(documents, lecture recordings, reference links) to the app. A ChatGPT-style chatbot
is then trained on this curated dataset, allowing students to ask questions and receive
precise answers based on the provided content.

Instead of relying on generic Al-generated knowledge, the chatbot operates within the
boundaries of the uploaded course materials, ensuring accuracy and relevance.

Workflow -
1Content Upload by Professors/TAs

e Professors or TAs upload lecture notes, slides, textbooks, research papers,
and other course materials.
e The system ingests and organizes this data into a structured knowledge base.

2Al Processing & Indexing

e The system processes PDFs, Word documents, and transcribed lecture
recordings.

e Vector embeddings (e.g., using OpenAl’'s Embeddings or FAISS) allow
semantic search across documents.

3Chatbot Interaction

e Students ask questions in a ChatGPT-style interface.

The chatbot retrieves relevant content from the curated dataset and generates
answers using RAG (Retrieval-Augmented Generation) techniques.

4Enhanced Features

Citation & Source Linking: Every answer includes references to the original
material.

Multimodal Support: Can answer using text, diagrams, or short Al-generated
summaries.

Follow-up & Contextual Understanding: Students can refine their queries
based on previous responses.

Pros & Cons

Pros:

Cons:

Ensures accuracy by relying only on course-approved materials.

Helps students get immediate, relevant answers instead of searching through
large documents.

Allows continuous learning by refining the chatbot based on user queries.
Scalable — works across multiple courses and semesters.

Requires professors/TAs to regularly update content, which may add
workload.

Initial setup requires efficient document parsing and knowledge structuring.
The chatbot may struggle with complex, multi-step reasoning without deeper
fine-tuning.

Use Cases

Use Case 1: Quick Concept Clarifications

A student is confused about gradient descent after a lecture.

They ask the chatbot, "Can you explain gradient descent with an example?"
The chatbot retrieves explanations from the professor’s slides and provides a
concise answer with a linked reference.

Use Case 2: Homework & Exam Preparation

Before an exam, a student asks, "What are the key topics for the midterm?"

e The chatbot pulls topics from the syllabus and past exam patterns uploaded
by the professor.

Use Case 3: Understanding Code Examples

A student is stuck on an algorithm assignment.

They upload their code snippet and ask, "Why is this giving an error?"

The chatbot analyzes the code using contextual course material and suggests
fixes.

Prototype & Testing Plan
Learning Prototype Goals:

e Test Al retrieval accuracy — Does the chatbot provide correct and relevant
answers?

e Evaluate usability — Do students find the chatbot more effective than searching
documents manually?

e Measure engagement — How often do students use the chatbot, and what
questions do they ask?

Prototype Plan:

Step 1: Build a document ingestion pipeline (PDF, Word, transcripts).
Step 2: Implement a basic semantic search and chatbot Ul.
Step 3: Conduct user testing with a small dataset, iterating based on feedback.

This approach provides an Al-powered assistant that enhances student learning
while ensuring professor-approved accuracy.

Technical Discussion for Each Approach:

Refer to Technical Di ion (Link to r itory, From Sprin for technical discussion of
Approach 1 added in Sprint 1.

Approach 1: Al-Assisted Note-Taking with Q&A

Technology Stack

Speech-to-Text: OpenAl Whisper, DeepSpeech

LLM for Q&A: GPT-4, Claude

Frontend: React Native (for mobile), Next.js (for web)
Backend: FastAPI, Firebase

Database: PostgreSQL (lecture transcripts, user queries)

Challenges & Solutions

Latency in transcription? — Use lightweight Whisper models for faster
response times.

Handling diverse accents? — Train with diverse datasets to improve ASR
accuracy.

Al Q&A response accuracy? — Implement Retrieval-Augmented Generation
(RAG) for lecture-context answers.

Approach 2: Hybrid Crowdsourced Annotations

Technology Stack

Speech-to-Text: Whisper, Vosk

Collaborative Editing: Firebase Firestore
Version Control: Git-like tracking for user edits
Gamification: Django-based leaderboard

Challenges & Solutions

Preventing misinformation? — Implement an upvote/downvote & instructor
verification system.

User participation concerns? — Add incentives like badges, recognition from
professors.

Approach 3: Knowledge-Based Chatbot with Curated Content

Technology Stack

Document Ingestion: LangChain + FAISS for semantic search
Chatbot: GPT-4 with RAG

Frontend: React.js (web), Swift/Kotlin (mobile)

Database: PostgreSQL (storing indexed lecture materials)

Challenges & Solutions

Ensuring high-quality answers? — Use instructor-approved documents as
the knowledge base.

Can students trust Al responses? — Provide citations for every answer
linked to original materials.

Mockups

Solution Approach 1: (Refer to the image here)

030 2 .
< My Courses
DSA

Fundamaentals of data structures and

their role in efficient computing
da 3 Lectures

Fundamentals of Computer Operating

ntroduction to developmant of
® Mobile Applications and Services

O Aemamber Me

Don't have &n sccount?

@ Create New Course

b

1. Login Screen

o Simple login page with username and password fields.

sa0 3

. ds

& Lecturesin DSA

Chat with Al (All Lectures)

Time Complexity =
How to amalyze the time complexity
of algorithms

@ Today * 23 min [3

Arrays, Linked lists
When and how to use arays and
linked lists

@ Today * 23 min >

Stacks, Queues -
How stacks (LIFO) and queues
(FIFO) help manage data efficiently

@ Today - 23 min >

@

Drag & drop files or

o Links for "Sign Up" and "Forgot Password" for new users and password

recovery.
2. Courses Dashboard

o Displays "My Courses" with relevant course cards.
o Each course card shows name, brief description, and stats.

o Option to "Create New Course" at the bottom.

3. Course Lecture List

o Lists all lectures under a selected course (DSA in this case).
o A prominent "Chat with Al (All Lectures)" button for Al chatbot which will

have context across all the lectures.

o File upload allows students to upload new lecture recordings.

A |

'9:30 4 [] i

& Summary

Trees, Graphs

Samary Genersied 1 duy ogo P

The lecture provides an introduction to hierarchical and
non-linear data structures like trees and graphs, which are
essential for efficiently organizing and connecting data. It
explains binary trees, binary search trees (BST), and
different graph representations such as adjacency
matrices and adjacency lists.

It also intreduces traversal algorithms such as BFS and
DFS, explaining how they help in searching and navigating
through data structures.

Saved Notes

Binary Tree Notes
ntroduction to binary trees and notes on terminologies

used

Doubts on Dijkstra

on when Dijkstra fails and what are the

Expla

Trees, Graphs 1n »

A

4. Lecture Details Page

9:30 5 . A8
& Trees, Graphs

Generated 1 day age ‘?
Binary Tree Notes

1. Introduction
A Binary Tree is a hierarchical data structure in which each
node has at most two children (left and right). It is widely

Qrganized Motes

used in computer science for organizing and storing data
efficiently.

2. Basic Terminology

* Root: The topmost node of the tree.

= Parent Node: A node that has children.

« Child Node: A node that descends from another node.

* Leaf Node: A node with no children

= Internal Node: A node that has at least one child

= Subtree: A tree formed from any node along with its
descendants.

¢ Depth of a Node: The number of edges from the root to
that node.

* Height of a Nede: The number of edges in the longest
path from the node to a leaf.

= Height of Tree: The height of the root node,

* Degree of a Node: The number of children it has (max 2
in a binary tre),

3. Types of Binary Trees

1. Full Binary Tree: Every node has 0 or 2 children

2. Complete Binary Tree: All levels are completely filled
except possibly the last, which is filled from left to

Trees, Graphs 1n »

e O

& Trees, Graphs

com right, q w e t]ly ol|p
3. Perfect Binary Tree: A tree where all internal nodes
have two children, and all leaf nodes are at the same alsldl+ h I
Insertion time complexity L _ g
4, Balanced Binary Tree: The height of the left and right
E z|x civib nim

o The Al-generated summary of the lecture and an option to download the
lecture resources (notes) and summary to make it available offline. “Chat
with Al button” for Q&A and doubt resolution.

o Notes section containing Al generated organized notes and excerpts from
the chats saved by users

5. Notes Page
o Well-structured notes organized across sections along with highlighting.
o Automatically formatted sections for readability.
6. Al-Powered Chat for Lecture Assistance
o Chat interface for students to interact with Al.
o Al provides contextual answers based on lecture materials

Solution approach 2:

3 & s a0 w30 []

+ Upload video H € Summary ! i & Discussion & Discussion

Available videos & Trees, Graphs Trees, Graphs

Data Structures

Trees, Graphs

@ rotnee

Arrays, Linked liste
T ———

@ i

Stacks, Queues 3

Discussion Thread 3 sty i b ooy og

Data Structuras Thread 1 =+
ety s dala srechuris asd

Appicaticnns of Trees

@ ot Thread 2
Arrays, Linked lists Lot Teawiesal - BFE o0 BFE Fai Dibharit Sceruiihon

LR Thread 3 »

Drag & drop files or

e Upload screen
o Lists all lecture videos uploaded.
o File upload allows students to upload new lecture recordings.
e |ecture Details Page
o The Al-generated summary of the lecture and an option to download the
lecture resources (notes) and summary to make it available offline.
“Discussion” button for Q&A and doubt resolution.
o Notes section containing Al-generated organized notes.
e Discussion screen:
o Shows the summary of the lecture
o Shows a list of discussion threads
e Specific thread screen:
o Shows the summary of the lecture
o Shows the conversations of that thread.

Solution approach 3:

230

[] 530 [] 30 [] o0

« Upload Materials £ « Available Materials 3 + Summary 3 « Trees, Graphs

g Data Structur
o Fundeenankls ofdei shuckess sl [ot s
Arrays, Linked lists -
Whe nd Wi 10 UBE BITaYS and
) Arrays, Linked lists =
When and how ta use arraya and

Notes on Time Complexity (@ Todsy- 21
Proafs of time complesiy of various algaritims

Time Complexity
Er e T i Ty

@ > ©

gwe rtywuiap

Drag & drog files or

Arrays, Linked lists
. haw to use arrays and

When and
Vinked
asdf gh j k|
£ z x cvbnm&

space raturn

Instructor’s screen
o Lists all lecture videos uploaded. Accessible only to the instructors.
o File upload allows instructors to upload lectures and other materials.
Course Lecture List
o Lists all lectures under a selected course (DSA in this case). Available to
the students.
o A prominent "Chat with Al (All Lectures)" button for Al chatbot which will
have context across all the lectures.
Lecture Details Page
o The Al-generated summary of the lecture and an option to download the
lecture resources (notes) and summary to make it available offline. “Chat
with Al button” for Q&A and doubt resolution.
o Notes section containing Al-generated organized notes.
Al-Powered Chat for Lecture Assistance
o Chat interface for students to interact with Al.
o Al provides contextual answers based on lecture materials uploaded by
the instructor.

Storyboards

Solution approach 1

The student is attending a lecture which The student then uploads the recording on Omnce the lecture is uploaded. The app
will be recorded by the professor and the app generates meeting summaries, follow-up
made available to everyone questions, ete

All the recording threads can be organiced The student can ask further questions
based on the course, module, or even related to the lecture and get Al-generated
tonics ANSWETS

This storyboard illustrates a seamless process where lectures are recorded by professors
and uploaded to an app for student access. The app enhances learning by generating
Al-powered meeting summaries, follow-up questions, and insights. It organizes recordings
into threads based on courses or topics for easy navigation. Students can interact with the
content by asking questions and receiving Al-generated answers, making the learning
experience more engaging and personalized.

Solution approach 2

Students are attending the lecture, which is
being recorded, and the generated transeript
will be available to them shortly

pO®@OODDE

Users earn points, badges, and recognition for
quality confributions for o gamilied experience

TR PTOTesS LS

7.5 0« MG R TENG]
3 p—

Students and instructors refime transcr i|||\, add
explanations, and certify high-quality summaries
for better accuracy

Al-generated notes to ensure accuracy and

alignment with course ahjectives

Users can start discussions thread within
transcripts to clarily complex topics
collahoratively

E SUNENT 15 ST HARE UK 30

polished version of lecture notes on the app

This storyboard focuses on collaborative learning through lecture transcripts. After lectures
are recorded, transcripts are generated and shared with students and instructors. Users
refine these transcripts collaboratively, adding explanations and verifying accuracy to
produce high-quality summaries. Discussion threads within transcripts allow for clarification
of complex topics, while gamified contributions reward users for their input. Professors
review the refined notes before publishing them, ensuring alignment with course objectives.

Solution approach 3

The professor is uploading lecture
materials to the app

The app generates interactive tools like quizzes
to test comprehension, while flasheards
reinforce retention of key concepls

The app then transcribes the lecture, segments

it into Jogical topics, and highlights important
kevwords for focused learning using AT model
running locally

e

o)
=
i

L

The app creates clear, concise summaries
of the lecture col
combining transcript data and external
FESOUNCEs

ng Al models,

The student can review summaries, fMlashcards,
gquizzes, and concept maps anytime—even
offline—to master concepts before exams

This storyboard highlights the use of Al to transform lecture materials into interactive study
tools. Professors upload lecture content, which the app transcribes, segments into topics,
and summarizes using Al models. The app further enhances learning by creating quizzes,
flashcards, and concept maps to reinforce understanding. Students can access these
resources offline, enabling them to master concepts at their own pace and prepare
effectively for exams or assignments.

Prototype Implementation

For Sprint 3, we developed a functional prototype of Classmate Al, integrating Al-assisted
lecture note generation, real-time transcription, automated summarization, and an
Al-powered Q&A system. This prototype enables students to upload lecture audio,
generate structured summaries, and interact with Al for clarifications.

For Sprint 4, we extended the Classmate Al prototype by refining the lecture processing
pipeline and integrating an Al-powered chat system for contextual question answering. The
updated prototype enables students to upload lecture recordings, receive structured
Al-generated notes, and interact with an intelligent chat assistant that can answer questions
based on lecture content.

The primary objectives of this sprint included:

Enhancing lecture detail pages with interactive features and note previews
Implementing Al-powered Q&A using contextual chat based on lecture
summaries

Improving the Ul to support note exploration, chat, and saved responses
Extending backend support for chat sessions and lecture-specific context
retrieval

The system allows students to upload lecture audio files, which are transcribed and
summarized using Al models. Summaries are displayed in an organized format, and
students can now initiate a chat session to clarify concepts. The Al assistant references
structured notes and the lecture transcript to generate accurate, course-specific responses.

< Courses Lectures

Trees
Lecture on Trees

Courses Log out

Cancel @ accounts.google.com £ ¢

Data Structures and

Algorithms
ED oo key DSA concepts including

trees and graphs.

G signin with Google

Sign in to classmate-ai

Heap Sort
@ Vvkshah2001@gmail.com ~
B Lecture on Heap Sort >
Introduction to Psychology
A foundational overview of Freudian
theory and the evolution of modern

psychology.

r name, email
and profile picture with
's Privacy Policy and

Welcome to ClassmateAl!

G Sign in with Google

Terms of Sel

You can manage Sign in with Google in your Google
Account.

Cancel) Continue

English (United States)

.. Debug Like a Pro!
o

CodeNinja - Your Al-powered debugging assistant.

Y. y

1. Login Screen: Provides a Firebase powered Google Auth.

2 Upload Files

2. Courses Screen: Displays a list of available courses with titles, descriptions, and the
number of lectures.

3. Lecture Screen: Upon selecting a course, users can view its associated lectures.
Each lecture card provides a brief description, date, and duration. The “Upload Files”
button allows students to upload new lecture audio files for processing. Lecture screen
shows targeted ads based on the course. This is a placeholder for now.

{ Lectures Lecture Details

{ Lecture Details ~ Notes otes Chat with Al ¢ Lecture Details Notes

["] Detailed Notes on Trees What s the time complexity of the in-order Sure! Here's a simple Python implementation of

i 1?7 + .
Trees feverse in-order traversal for a binary tree, both
1. @ Purpose recursive and iterative versions:
+ Build a strong foundation i binary trees ‘teatbn%i‘h?:g :J :;et;ee :izeer:alw'sN . Recursive In-Order Traversal
Chat with Al before tackling complex problems. A OO e L
- Understand the core types of trees and the t on the time we're taking is going to class TreeNode:
three depth-first traversals using def _ init_ (self, val):
Summary recursion. self.val = val

self.left = None
- Learn how recursion expresses state and

This lecture builds a solid understanding of
decision-making at each node.

binary trees by covering tree types (full,
complete, pe...

self.right = None

def in_order_recursive(node):

Show More 2. @ Types of Binary Trees if node is None:

@ Full Binary Tree return
- Every node has either 0 or 2 children. in_order_recursive(node.left)
print(node.val) # Visit the

node

Saved Notes

- No node has exactly one child.

@ Complete Binary Tree in_order_recursive(node.right)

Organized notes on Trees
- All levels are filled except possibly the last,
which is filled left to right.

Iterative In-Order Traversal
+ Used in binary heaps.

@ Perfect Binary Tree
- Allinternal nodes have two children.

def in_order_iterative(root):
stack = []
current = root

. - All leaves are on the same level.
Pseudo code for in-order traversal q q

. while current is not None or
- Aperfect tree is both full and comnlate

(D Chatwith Al
3.|z) Tree Traversal \

4. Lecture Details Screen: Shows detailed information about a selected lecture. This
screen now includes Al-generated summaries, structured organized notes, and access
to the contextual Q&A feature via the “Chat with Al” button. Students can also download
lecture summaries for offline review.

stack:

Note g Python implementation of in-

while curre SP ChatwithAl

stack.append(current)

5. Notes Screen: Displays detailed Al-generated study notes with hierarchical structure.
Notes are presented using section headers, bullet points, and keyword highlights.
2Technical lectures could also include annotated code snippets or pseudocode where
applicable. Chat responses saved by the student are also displayed in this viewer.

6. Al-Powered Chat Screen: Students can ask follow-up questions based on the
lecture content. The Al assistant references the structured notes and generates
contextual responses. For example, a query such as “What is the time complexity of
in-order traversal?” prompts a targeted explanation along with code samples. Users can
save any chat exchange as part of their study notes for later reference.

This iteration focused on improving post-lecture engagement by integrating Al assistance
directly into the note-taking workflow. By embedding the chat feature within the lecture
details and notes screens, students can explore material more deeply without switching
between tools. All chat interactions are tied to specific lectures, ensuring that the Al
assistant provides relevant, context-specific answers.

These enhancements ensure a cohesive learning experience where students can review
structured content, clarify doubts, and build a reliable study archive from their lectures.

Second Platform Implementation

For Sprint 5, we implemented a second platform which is a webapp that lets instructor
upload transcripts, review the summary generated by Al and validate it. Once the
summary is validated, it will be visible to the students as instructor validated, which will
increase student’s trust in the Al generated notes.

Overview of each screens -
1. Login Screen: Provides a Firebase powered Google Auth.

2. Courses Screen: Displays a list of available courses with titles, descriptions, and the
number of lectures. Instructors can continue to add new courses using the “Create New
Course” button at the bottom of the screen.

3. Lecture Screen: Upon selecting a course, instructors can view its associated
lectures. Each lecture card provides a brief description, date, and duration. The “Upload
Files” button allows instructors to upload new lecture audio files for processing.

4. Lecture Validation Screen: Once the audio file is processed, the summary is
generated and ready to be validated by the instructor. The instructor can review the Al
generated summary, edit it if required and validate it. Once it is validated, the students
can view the validation mark on their app.

Screenshots of the webapp -

Instructor Sign In

G SIGN IN WITH GOOGLE

LOGOUT (RAJSHAH2320)

ClassmateAl Instructor Panel

Your Courses

*

Introduction to Psychology

A foundational overview of Freudian theory and

g

Data Structures and Algorithms

An intro to key DSA concepts including trees and
graphs. the evolution of modern psychology.
3 Lecture(s) 2 Lecture(s)

Last Updated: 4/19/2025

Last Updated: 4/19/2025

© 2025 ClassmateAl

LOGOUT (RAJSHAH2320)

ClassmateAl Instructor Panel

Lectures

UPLOAD NEW LECTURE AUDIO

will start.

& Lecture "Intro to

Ready for Review)

Intro to Psychology - 1
Uploaded: 4/19/2025 | Duration: 11 min

& Processing

Intro to Psychology - 2
Uploaded: 4/19/2025 | Duration: 21 min

© 2025 ClassmateAl

ClassmateAl Instructor Panel LOGOUT (RAJSHAH2320)

Review Lecture: Intro to Psychology

Transcript

That dream about the dinosaur on the leotard, those times that you said that
thing that you know you shouldn't have said, or even that thing you didn't
even know you were gonna say. The little cogs of your consciousness cranking
away, making your life possible, making society function all of the things
that you're so glad you can do, and all the ones you wish you could stop
doing. Excluding other human minds, your mind is the most complicated piece of
the universe that humans currently know about. The rules that govern it are
mysterious and elusive. Maybe our brains just aren't complex enough to
understand themselves, but that's not gonna stop us from trying. The word
psychology comes from the Latin for the study of the soul, and while its
formal definition has evolved over the last several decades, today we can
safely call it the science of behavior and mental processes. The term

Al-Generated Notes (Read-only)

Introduction to Psychology

Focused on the importance of early experiences in shaping the unconscious.
How the unconscious affects thoughts, feelings, behaviors, and personalities.

« Mid-20th Century Developments:

> Humanist Psychology: Focused on nurturing personal growth
Cognitive Science: Study of mental processes.
o Neuroscience: Study of the nervous system and its relation to behavior and mental processes.

* Modern Definition Revisited:

The study of behavior and mental processes.
> Combines insights from various schools of thought.

Instructor Validated Notes
Edit and Validate Summary

Introduction to Psychology
* **Definition of Psychology:**
* Evolved from the "study of the soul" (Latin).

* Modern definition: The science of behavior and mental processes.

* **Historical Context:**
* Psychology tackles big questions about the human mind and behavior.

SAVE & VALIDATE SUMMARY

© 2025 ClassmateAl

Technical Discussion (Link to repository)

Platform and Architecture Overview

As part of our Sprint 3 and 4 learning prototype, it is built using a hybrid architecture that
combines a React Native mobile frontend with a Flask-based Python backend. This

approach allows us to deliver a cross-platform mobile experience while leveraging
powerful Al capabilities for audio transcription, summarization, note generation, and
interactive Q&A via chat functionality.

High-Level System Architecture

Firebase Auth

Auth token

APl Requests Audio and queries,_
Flask Backend

& &

)
Data response

React Native App Al Services

Transcripst
and responses

Store data Retrieve data

Legend

B Frontend I Al Services
B Backend Storage
B Authentication

The first diagram shows the core components of our system:

Firebase Auth—Authentication service for user identity management

React Native App—The mobile frontend that users interact with directly

Flask App—The central backend that handles business logic and API requests
External Modules—Al and processing services integrated into our system
Storage—Data persistence layer for courses, lectures, and files

abrwnN -~

This high-level architecture follows a client-server model where the React Native mobile
app authenticates users through Firebase Authentication and communicates with the
Flask backend through RESTful APls. The backend connects to external modules for
specialized Al functions and persists data to the storage layer. This separation of
concerns provides modularity and makes the system easier to maintain and scale.

Detailed Backend Flow

React Native App

API Requests

Course Screen

Course/Lecture Data

Lecture Screen

Chat Messages

Notes View

Al Responses
Chat Interface
File upload
File Upload
Notes Data

Authentication

Authentication Auth token

Authentication

Firebase Auth

The second diagram illustrates the detailed data flow for lecture processing:

Enhanced Components:

Flask backend

CRUD API

Audio Processing

Chat Management

Celery Task Queue

SQLAlcehmy ORM

Audio for transcription

Transcripts

Chat for Responses

Al Responses

Store Files

Retrieve Files

Store Data

Retrieve Data

Il Frontend
B Backend

[l Authentication

e React Native App: Our mobile frontend for student interaction

e Flask Backend: Server handling API requests and business logic

Storage Components:

e SQLite storage: Store all lecture- and course related data
e File Storage: Contains uploaded audio files

External Services:

e OpenAl Whisper: Handles audio transcription

e LLM API: Generates lecture summaries

1. Initial Request Flow

When a student or instructor wants to upload a lecture recording:

Al Services

OpenAl Whisper

LLM API

Storage

File Storage

S8QLite Storage

Legend

I Al Services

Storage

1. The React Native App initiates the process through the CRUD APIs, specifically
using:
o The app first creates a lecture entry with metadata using POST
/courses/{courseld}/lectures
o Once the lecture is created, the audio file is uploaded via POST
/courses/{courseld}/lectures/{lectureld}/upload-audio
2. File Transfer Process:
o The mobile app reads the audio file from the device storage using Expo's
DocumentPicker
The file is packaged as multipart form data and sent to the Flask backend
The uploadAudioFile function in uploadAudio.tsx handles this with timeout
protection (30 seconds as defined in constants)

2. Backend Processing
Once the Flask backend receives the audio file:

1. Initial Storage:
o The audio file is saved to the uploads directory with a filename based on
the lecture ID
o The Flask backend updates the lecture record in lectures.json with:
m The file path (audioPath)
m Upload timestamp (uploadDate)
m Audio duration in seconds (duration)
m Processing status (summaryStatus set to "IN. PROGRESS")
2. Transcription Process:
o The backend spawns a background thread via threading.Thread to avoid
blocking the response
This thread calls process_transcription which invokes the Whisper API
The transcribe _audio function loads the Whisper model and processes the
audio file
o The resulting transcript is saved both in memory and as a text file
3. Summarization Process:
o Once transcription completes, the summarize_transcript function is called
o This uses the summa library to create a condensed version of the
transcript
o The summary is stored alongside the transcript in the lecture record
4. Large Language Model (LLM) Processing:
o With the transcript ready, the backend makes a request to an LLM API
o The get_summary function sends the transcript to the LLM

o The LLM processes the text and returns a structured summary
o This summary is then stored in the lecture record

3. Response Flow

After processing (or during asynchronous processing):

1. Real-time Status Updates:
o The mobile app can poll the lecture status using GET /lectures/{lectureld}

o The backend returns the current processing status (summaryStatus field)
2. Final Content Delivery:

o Once processing completes, the summaryStatus field changes to
"COMPLETED"

o The mobile app can then display the transcript and summary to the user

o Users access the full content through dedicated screens in the React
Native app

4. Chat Functionality
The fourth diagram illustrates the chat-based Q&A functionality:
Chat Workflow:

1. Chat Creation: Users initiate a new chat session related to a specific lecture

2. Message Exchange: Users send questions and receive Al-generated responses

3. Context-Aware Responses: The system leverages lecture summaries to provide
more relevant answers

4. Asynchronous Processing: Responses are generated in the background to
maintain Ul responsiveness

Chat Components:

e Chat Sessions: Each chat is associated with a specific lecture and has a unique
ID

Message History: All messages (both user and Al) are stored with timestamps
LLM Al Integration: Powers intelligent responses using lecture context

Chat Data Flow:

1. Initiation:
o User starts a new chat for a specific lecture via the mobile app

o Backend creates a chat session with a unique ID
2. Question Submission:
o User submits a question through the chat interface
o Question is sent to the backend and stored in the chat history
3. Al Processing:
o Backend spawns a background thread to process the question
o For the first message, lecture summary is automatically added as context
o Query is sent to Perplexity API with appropriate formatting instructions
4. Response Delivery:
o Al response is received and stored in the chat history
o Mobile app retrieves the updated chat history
o Response is displayed to the user in Markdown format

5. Instructor validation (Added in Sprint 5)

React Web App Flask backend Al Services
AP| Requests Audio for transcription
Course Screen CRUD API OpenAl Whisper
Transcripts

Course/Lecture Data

Lecture Screen < Audio Processing Get Summary
LLM API

Al Responses

Fetch summary

Chat Management

Lecture Review

Al Responses .
. < ma
File Upload Celery Task Queue Store Files

File Storage
Retrieve Files
Store Data

Data Access Layer Retrieve Data

Validate Summary
Authentication

Auth token

Authentication

Authentication

Legend
B Frontend B Al Services
M Backend [storage

M Authentication

The instructor validation workflow is a critical quality assurance component of
ClassmateAl, ensuring that Al-generated content meets academic standards before
being made available to students.

Validation Workflow:

1. Content Generation: After lecture audio is processed, Al generates initial
transcripts, summaries, and study notes

2. Instructor Review: Faculty members review the Al-generated content through a
dedicated interface

3. Manual Editing: Instructors can edit and refine all aspects of the content

4. Validation Action: Instructors officially validate the content, marking it as
approved

5. Status Update: The system updates content status to "VALIDATED" for student
consumption

Validation Components:

e Review Interface: A specialized Ul for instructors to evaluate and modify
Al-generated content
Edit Controls: Rich text editors for modifying transcripts and notes
Validation Status: Content flagging system that tracks validation state
Version History: Records of original Al content and instructor modifications

Validation Data Flow:

1. Initial Access:
o Instructor selects a processed lecture from the dashboard

o Backend retrieves the Al-generated content (transcript, summary, notes)
o Content is displayed in the review interface with editing capabilities
2. Content Editing:
o Instructor reviews for accuracy, clarity, and completeness
o Makes necessary corrections or enhancements to the material
o System provides real-time feedback on changes
3. Validation Submission:
o The instructor approves content by clicking "Save & Validate."
o Modified content is sent to the backend via the validateSummary API
o Backend updates lecture records with validated content and timestamps
4. Status Propagation:
o Lecture status is updated to "VALIDATED" in the database
o Visual indicators on the dashboard reflect validated status
o Content becomes available to students through the mobile app

Swimlane diagram for End-to-End chat functionality

ClassmateAl End-to-End Flow

User ’ ‘ Mobile ’ ‘ Backend ’ ‘ Storage ’

Al

Course/Lecture Management

Select Course/Lecture

Request Course Data

Fetch Courses/Lectures

Return Course Data

Display Lectures

Show Available Lectures

Audio Processing

Upload Lecture Audio

Send Audio File

Store Audio File

Request Transcription

Return Transcript

Save Transcript

Confirm Save

Update Status

Show Processing
Complete

Chat Furl'nctionality I

Ask Question

Send Chat Message

Retrieve Lecture Context
Return Context
Generate Ch.at Response
Return Al IResponse
Save Chat History

Display Al Response

Show Answer

User ’ ‘ Mobile ’ ‘ Backend ’ ‘ Storage ’ ‘ Al

Instructor Validation

Review Lecture Notes

L
rd

Request Al Notes

W

Fetch Motes & Transcript

r

Return Content

M

Display Content for
Review

3

Show Al-Generated Motes
"

=

Edit & Validate Notes

L
ra

Send Validated Notes

k

Save Instructar‘-."alidatit}rl

ra

Confirm Update

M

Update Status to
VALIDATED

=

Show Validation Complete

Technology Choices

Frontend

e React Native: Chosen for cross-platform mobile development, allowing us to
target both iOS and Android with a single codebase

e Expo: Provides a simplified development workflow and access to native device
features

e React Navigation: Implements navigation between screens with a stack-based

approach
e React Native Paper: Offers Material Design components for a polished Ul

Backend

Flask: A lightweight Python web framework that provides flexibility for API
development

Whisper: OpenAl's speech recognition model for high-quality audio transcription
Summa: Text summarization library for initial processing of transcripts
Perplexity Al: Used for generating detailed study notes from lecture content
JSON Files: Simple storage solution for course and lecture metadata

File System Storage: Manages audio files and generated transcripts

Data Flow and Storage

Our application manages several types of data:

1.

Course Data: Metadata about courses, including title, description, and associated
lectures

. Lecture Data: Information about individual lectures, including title, description,

audio path, transcript, summary, and notes

Audio Files: Raw lecture recordings uploaded by instructors

Processed Content: Transcripts, summaries, and study notes generated from
audio files

This data is stored across

SQLite storage: Structured metadata storage

File System: Raw audio files and generated text content

In-Memory Processing: Temporary data handling during transcription and
summarization

REST API Endpoints

Our backend exposes the following key API endpoints:

Course Management

1. GET /courses

e Purpose: Retrieves all available courses
e Response Example:

2. POST /courses

e Purpose: Creates a new course
e Request Example:

s focusing on data

e Response: Returns the created course object with a generated ID

Lecture Management
1. GET /courses/{course_id}/lectures

e Purpose: Retrieves all lectures for a specific course
e Response Example:

"Lecture on array
+ "45 min',

"Mon Mar 04 2024"

2. POST /courses/{course_id}/lectures

e Purpose: Creates a new lecture within a course
e Request Example:

'so0rting Algorithms™

e Response: Returns the created lecture object with a generated ID
3. POST /courses/{course_id}/lectures/{lecture_id}/upload-audio

e Purpose: Uploads an audio file for a specific lecture
e Request: Multipart form data containing the audio file
e Response: Returns the updated lecture object with processing status

4. GET /lectures/{lecture_id}

e Purpose: Retrieves details for a specific lecture
e Response Example:

ng algorithms..

5. DELETE /lectures/{lecture_id}

e Purpose: Deletes a specific lecture
e Response: Confirmation of successful deletion

6. GET /lectures/{lecture_id}/chat

e Purpose: Creates a new chat session for a specific lecture
e Response: Returns a newly created chat ID
e Status Code: 201 on success

7. GET /chat/{chat_id}

e Purpose: Retrieves all messages for a specific chat session
e Response: Returns an array of message objects
e Status Code: 200 on success, 404 if chat not found

8. POST /chat/{chat_id}

e Purpose: Adds a new message to a chat session and triggers Al response

Iltypell: Iluser.lll

"message": "Can you explain the concept of neural networks from this

Response: Confirmation of message addition

Status Code: 201 on success, 400 if message data is invalid, 404 if chat not
found

Note: For the first message in a chat, the lecture summary is automatically added
as context

9. DELETE /chat/{chat_id}

Purpose: Deletes a specific chat session and all its messages
Response: Confirmation of successful deletion
Status Code: 200 on success, 404 if chat not found

10. PUT /lectures/{lectureld}/validate-notes

Purpose: Updates a lecture with instructor-validated notes, marking the content
as reviewed and approved for student consumption.
Request Example: lectureld in the URL params and request body

'# Introduction to Quantum Mechanics\ninThis lecture

Response:

: "Note validated successfully",

e Status Code: 200 on success, 400 Bad Request if no notes or missing lecture

Implemented vs. Planned Features

Currently Implemented:

Basic course and lecture management
Audio file upload functionality

Transcription of lecture audio using Whisper
Basic text summarization of transcripts
Mobile Ul for browsing courses and lectures
Study note generation from transcripts
End-to-end chat functionality

User authentication

Instructor validation of summaries

Code Review

Project Structure

|— Backend # Flask + Celery + Whisper + Perplexity/Gemini

| —app.py # Lightweight (fail-fast backend; defunct)

| |— celery-app.py # Production-grade backend with background tasks

| — ai_agent.py # LangChain Perplexity/Gemini-based note generator and chatbot
| — Transcription/ # Whisper-based transcription
|

|

|

— uploads/ # Audio file storage
L— requirements.txt # Backend dependencies

|— InstructorUl # React + MUI web app

| b— src/pages/ # Pages like CoursesDashboard, LectureReview
| |— src/components/ # Upload, Layout, ProtectedRoute

| |— contexts/ # Firebase AuthContext

| — services/ # API service hooks
|
|

L— App.tsx # Route + Theme setup
L— StudentUl # React Native mobile app
|— components/ # Screens (Course, Lecture, Chat, Notes)
— utils/ # Styles, constants, fetch/upload logic
— index.tsx # Navigation stack and auth listener
L— app.json # Expo config

Code Structure and Interaction Patterns
Platform Synchronization

Both the Instructor (web) and Student (mobile) platforms are unified via a shared Flask
backend exposing consistent REST API endpoints. These endpoints support CRUD
operations on courses and lectures, upload and processing of audio files, and chat
interactions.

e Instructor validations through the web app are reflected on the student mobile Ul
in real time via polling or re-fetching.

e Lecture states (e.g., IN_ PROGRESS, COMPLETED, VALIDATED) drive the user
experience on both platforms without duplication of logic.

State Management and Ul Reactions

StudentUI (React Native):

e Uses React hooks to manage asynchronous state during lecture uploads,
transcription progress, and chat interactions.

e Implements rollback logic: if a file upload fails or exceeds timeout limits, the
orphaned lecture is deleted from the backend using deleteLecture().

e The LecturesScreen and LectureDetailsScreen conditionally render Al-generated
summaries and initiate Q&A sessions using lecture-specific context.

InstructorUl (React + MUI):

Uses controlled form components for editing Al-generated content.
Validation and edits are submitted via PUT requests to the backend. The lecture
is marked as VALIDATED and updated for all clients.

e |Instructors have access to a real-time Markdown-rendered preview alongside
editable fields.

Backend Design and Task Offloading

e transcribe_audio_task and generate notes_task are chained to ensure that
downstream processes only start after upstream results are available.

The backend is structured to handle CPU heavy tasks like transcription asynchronously
using Celery workers communicating over Redis Server:

e Long-running tasks use retries and backoff strategies for stability.
e Validation APIs (PUT /lectures/{lectureld}/validate-notes) update records with
instructor-edited summaries and transition content into a student-visible state.

Error Handling and Resilience

e The mobile app ensures atomic transactions: lecture records are only finalized
upon successful audio upload and processing.

e Both platforms check processing status via polling (GET /lectures/{lectureld}),
enabling the frontend to reactively show loading indicators or completed content.

Interesting Code Snippets:

1. Asynchronous Task Processing with Celery and Redis

To avoid blocking the main Flask application during resource-intensive operations such
as transcription and note generation, long-running tasks are delegated to background
workers via Celery, using Redis as the message broker and result backend.

Example: transcribe_audio_task

@celery.task(bind=True, max_retries=3)
def transcribe_audio_task(self, audio_path, lecture_id):
"""Celery task to process and transcribe lecture audio."""
with app.app_context():
try:
logging.info(f"Transcribing audio for lecture {lecture_id} from {audio_path}")
transcript_val = transcription.transcribe_audio(audio_path)
logging.info(f"Transcript generated for {lecture_id}")
summary = summarize_transcript(transcript_val)
logging.info(f"Summary generated for {lecture_id}")

377 lecture = Lecture.query.get(1ecture_idﬂ
if lecture:
lecture.transcript = transcript_val
lecture.summary = summary
lecture.summary_status = "TRANSCRIBED"
lecture. last_updated = datetime.now(timezone.utc).timestamp()
db.session.commit()

generate_notes_task.delay(lecture_id)
else:
logging.error(f'Lecture {lecture_id} not found.")
except Exception as e:
logging.error(f"Error processing transcription for {lecture_id}: {str(e)}")
raise self.retry(exc=e, countdown=60)

Design Highlights:

@celery.task decorator with bind=True allows retries on failure using self.retry(...).
Transcription and summarization logic is encapsulated in a background context to keep
request-response latency low.

Redis provides a lightweight, fault-tolerant queue system for asynchronous execution.
Task chaining (generate_notes_task.delay(...)) supports multi-phase pipelines without
additional orchestration.

2. Drop-in LLM Integration via AlAgent Abstraction

The AlAgent class abstracts interaction with language models, making it easy to switch between
providers (e.g., Gemini, OpenAl, Perplexity) while maintaining consistent behavior across the
application.

Example: AlAgent Implementation

class AIAgent:
def __init_ (self, api_key: str):
self.llm = ChatOpenAI(
model="perplexity",
openai_api_key=api_key,
openai_api_base="https://api.perplexity.ai"”,
temperature=0.4,

self.content_prompt = ChatPromptTemplate.from_template(-
self.title_prompt = ChatPromptTemplate.from_template(-

self.summary_prompt = ChatPromptTemplate.from_template(

)

def generate_notes(self, : str, transcript: str):
content_prompt = self.content_prompt.invoke({"transcript": transcript})
content_response = self.llm.invoke(content_prompt)

(variable) summary_response: Any 't.invoke({"transcript": content_response.content.strip()})

summary_response = self.llm.invoke(summary_prompt)

title_prompt = self.title_prompt.invoke({"transcript": content_response.content.strip()})
title_response = self.llm.invoke(title_prompt)

return {
"id": str(uuid.uuid4()),
"title": title_response.content.strip(),
“summary": summary_response.content.strip(),
“content": content_response.content.strip(),
"date_generated": datetime.now(timezone.utc).timestamp(),

Design Highlights:

Provider-agnostic design allows for seamless migration between LLM APIs.
Prompts are decoupled and reusable across multiple agents and tasks.
Supports different usage contexts (note generation, chat responses) with tailored
prompts.
e Enables prompt-level experimentation without modifying business logic or API routes.

3. Robust File Upload with Timeout and Rollback

To ensure a seamless user experience and maintain backend data integrity, the
frontend implements timeout-aware audio upload logic. If the upload fails or exceeds the
configured duration, the partially created lecture is automatically deleted—preventing
orphaned records and avoiding confusion for the user.

Frontend: Upload Handler with Rollback

const response = await uploadAudioFile(uri, courseld, lectureld);
setUploading(false);

if (response.success) {
Alert.alert('Upload successful', 'Your audio file has been uploaded successfully.');

} else {
Alert.alert('Upload failed', 'Something went wrong while uploading the file.');
deleteLecture(lectureld);

}

} catch (error) {

setUploading(false);

deletelLecture(lectureld);

Alert.alert('Error', 'An unexpected error occurred.');

File Upload Utility: Timeout Enforcement

export const uploadAudioFile = async (uri: string, courseld: string, lectureId: string) => {
const UPLOAD_ENDPOINT = ${BACKEND_URL}/courses/${courseId}/lectures/${lectureld}/upload-audio”;

try {
9 const uploadurll = UPLOAD_ENDPOINT;
const fileInfo = await FileSystem.getInfoAsync(uri);

if (!fileInfo.exists) {
throw new Error('File does not exist');

}

const uploadPromise = Fi'LeSystem.uploadAsync(EplnadUrl, uri, {
httpMethod: 'POST',
uploadType: FileSystem.FileSystemUploadType.MULTIPART,
fieldName: 'audio',
headers: {
‘Content-Type': 'multipart/form-data',

3
sessionType: FileSystem.FileSystemSessionType.BACKGROUND,
1
// Enforce timeout using Promise.race
const timeoutPromise = new Promise((_, reject) =>
setTimeout(() => {

reject(new Error('Upload request timed out'));
}, AUDIO_UPLOAD_TIMEOUT_MS)
H

const uploadResult = await Promise.race([uploadPromise, timeoutPromise]) as FileSystem.FileSystemUploadResult;

if (uploadResult.status === 200) {
return { success: true, response: JSON.parse(uploadResult.body) };
} else {

return { success: false, error: ‘Upload failed with status ${uploadResult.status}’ };
¥
} catch (error: any) {
console.error('Upload error:', error);
return { success: false, error: error.message };
¥
4]

Key features:

e Upload is executed as a background session via expo-file-system, improving
performance on mobile devices.
Timeout logic uses Promise.race(...) to enforce a hard limit on upload duration.
On failure, deleteLecture(...) is invoked to roll back the orphaned lecture record.
Ensures atomic UX flow—users never see lectures without transcripts,
summaries, or audio.

Why this matters:
It's a textbook example of fail-fast recovery with separation of concerns—upload logic is
isolated and resilient, while the user interface remains responsive and trustworthy.

4. Multi-State Summary Validation Workflow with Live Al + Instructor Edits

The lecture review system implements a hybrid Al + human validation pipeline.
Al-generated summaries are editable in-place, and instructors can commit their
reviewed versions, shifting the lecture into a VALIDATED state.

Example: Summary Validation Logic
<Button
variant="contained"
color="primary"

onClick={handleSaveAndValidate}

disabled={isSaving || lecture.is validated}
>

{isSaving ? 'Validating...' : lecture.is validated ?
'Summary Validated' : 'Save & Validate Summary'}

</Button>

Why it’s interesting:

e Summaries move through states: NOT_STARTED — IN_PROGRESS —
COMPLETED — VALIDATED, tracked and shown with MUI chips.
TextField lets instructors override Al output, but only once the Al pipeline finishes.
Integration with notistack gives instant, non-blocking Ul feedback.
Instructors always have a live side-by-side view of the raw transcript, Al notes
(rendered via marked), and their editable version — a full-feedback loop.

This approach enables a human-in-the-loop review flow that’s production-grade,
transparent, and extensible — not just a static form.

Value Proposition Canvas

Solution approach 1

Gains
Gain creators
Students
+ Automatically generated notes
Students « Readily avallable content for Customer
+ Al-enhanced G&A Improves reference Jobs
Products and . ;dm'a"di"g - Educators
services SEEIRLTEA RS, + Reduce time spent addressing
markdown) enhance flexibility repetitive questions, Students
Educators: + Imprave engagement by allowing » Capture lecture notes efficiently
» Motes help keep track of what students to focus on discussions without missing key points.
* Automated note-taking Is taught rather than note-taking. = Review and retain key topics after
+ Al-powered Q&A a 8 class,
+ Readily available notes Pain relievers Pains Educators
Students « Improve student engagement
« Eliminates the stress of manual Students A R
nate-taking. * Hard to listen and wiite notes. * me.de better support for
+ Post-lecture structured + Inconsistent or incomplete notes, making #3Ming
summaries provide high-quality revigion harder
review material and helps keep Educators
track of topies being taught. + Repetitive guestions from students
Educators « Difficulty keaping track of content being
= Al-enhanced Q&A answers taught,

repatitive questions

Products and
services

= Al-powered
transcription and
summarization.

« Community-
driven annotation
and editing
system

Products and
services

= Al-powered
transcription and
summarization.

+ Al-powered chatbot
trained on
professar-approved
course materials.

Solution approach 2

Gain creators

Students

+ Higher-quality notes through
collaborative improvements.

+ Builds a growing knowledge
repository for future reference
Educators

+ Encourages active learning
with discussions..

Pain relievers

Students

Eliminates the stress of manual note-taking.

Post-lecture structured summaries provide
high-guality review material

Educators
Helps keep track of topics being taught,
Structured discussions allow students to
clarify doubts collaborativaly.

Gains
Students
* Automatically generated notes
= Readily available content for
reference
Educators
+ Reduce time spent addressing
repetitive questions.
» Improve engagement by allowing
students to focus on discussions

rather than note-taking. E

Pains

Students
= Hard to listen and write notes
« Inconsistent or incomplete notes,
raking revisien harder
Educators
« Repetitive questions from
students
« Difficulty keeping track of content
being taught.

Solution approach 3

Gain creators

Students

= Al chatbot refines answers
based on student feedback
Educators

« Enhances self-study by
making learming more efficient.

&

Pain relievers

Students
+ Reduces the time spent
searching through notes and
texthooks.
Educators
+ Automates answering
frequently asked guestions.

Gains
Students
= Automatically generated notes
« Readily available content for
reference
Educators
« Reduce time spent addressing
repetitive questions.
» Improve engagement by allowing
students to focus on discussions
rather than note-taking.

Pains &

Students

= Hard to listen and write notes
« Inconsistent or incomplete notes,
making revision harder

Educators
Repetitive questions frem
students
« Difficulty keeping track of content

being taught.

Customer
Jobs

Students
« Capture lecture notes efficiantly
without missing key points.
« Review and retain key topics after
class.
Educators
= Improve student engagement and
comprehension
= Provide batter support for leaming

Customer
Jobs

Students
+ Capture lecture notes efficiently
without missing key points.
+ Review and ratain key topics after
class.
Educators
+ Improve student engagement and
comprenension
+ Provide better support for learning

The problem statement concerns two groups of actors, the students and the educators.
The students’ jobs include writing down notes for their lectures and reviewing key topics
after the class. The educators’ jobs include improving student engagement and

comprehension and providing better support for learning. A few pain points that
students face are that it is difficult to listen to class and write notes simultaneously, often
ending up with incomplete notes that make it difficult to revise. Educators, on the other
hand, spend a lot of time answering repetitive questions from students and have
difficulty keeping track of the exact details of what is being taught in class. Through a
solution to this problem, students will be able to have a readily available reference to
revise and educators will be able to engage their students better.

Solution approach 1 provides Al-driven notes and Q&A, which help students revise the
content better. It reduces the stress of taking notes during the lecture, thus improving
engagement in class, and reduces the time spent by educators in answering repetitive
questions. Solution approach 2 provides a community-driven annotation, editing and
communication platform that improves the quality of the notes and further encourages
students to engage with the content. Solution approach 3 provides an Al-powered
chatbot trained on the materials approved by the professor. This maintains the quality of
the notes, at the same time making it more tailored towards the specific needs of
students for that topic.

Business Model Canvas

Key partners Key activities Value propositions Customer relationships Customer segments

Platfarm
Al companies that devel nt
provide access to b
rmacels for
transcription,
summarization
and contextual Al models
chat Integration
Ky resources
Classmat Channels
e Al
platfarm
transeription,

summarization
and contextual
chat

Cost Structure Revenue Streoms

Suftware Costafl
Dusielopament Cost ol using =TI ‘storage of
and M okl suppant oudic.ond the
Mantenance sunTares

Classmate Al is an Al-powered platform that enhances classroom experiences for both
students and educators. By offering features like automatic transcription,
summarization, and contextual chat, it delivers a clear value proposition: helping
students stay focused and engaged, while reducing repetitive tasks for educators.

Students gain access to Al-generated notes and summaries, reducing the need for
manual note-taking and allowing them to stay more engaged during lectures. They can
revisit material through contextual chat, prepare more efficiently for exams, and benefit
from a self-service experience that adapts to their learning pace. A freemium pricing
model ensures accessibility, with optional upgrades to access more advanced Al
features.

Educators benefit from having fewer repetitive queries, as students can independently
access key lecture content. They can also review, edit, and enhance Al-generated
summaries before publishing them to all course participants, ensuring that shared
content aligns with their intended message. The platform integrates smoothly into daily
workflows through an intuitive interface, supported by direct help channels and ongoing
platform development.

Feature Analysis

Completed features

Ra Feature User Use Relationshi VPC BMC
nk Role Case p to Other | Alignment | Alignment
Features
1 Audio Studen | Note Feeds into Automaticall | Key
Transcription | t/Educ | taking Al y generate Activities
ator note-taking | notes to (Platform
and Q&A save time development
and effort , Al model
integration)
Key
Resources
(Al models)
Channels
(Mobile app)
2 Al-based Studen | Note Feeds into Have readily | Key
Note taking t/Educ | taking Q&A available Resource(Al
ator summaries | model)
for reference | Key Partner
(Al
companies)
Channels
(Mobile app)
3 Q&A with Al | Studen | Clarifying | Works Reduce time | Revenue
model t doubts alongside spent on streams
transcription | repetitive (Premium for
and questions better Al
note-taking Improve models)
engagement | Key Partner
by focusing | (Al
on companies)
discussions | Channels

(Mobile app)

4 Saving chats | Studen | Note Supports the | Have readily | Key
as notes t taking Al-powered | available Resource(PI
Q&A by summaries | atform)
providing for future Channels
more inputs | reference (Mobile App)
5 Editing and Educat | Note Enhances Key
enhancing or taking/ the Al Resource(PI
instructor-pr clarifying | generated atform)
ovided notes doubts notes Channels
(Web app)
Future plan
Ra Feature User Use Relationshi VPC BMC
nk Role Case p to Other | Alignment | Alignment
Features
1 Interactive Studen | Reinforci | Uses Improve Revenue
LearningTool |t ng Al-generated | student Streams
s learning | notes and engagement | (Premium
through | transcripts by focusing | plans for
practice | for content on learning | tools and
rather than insights)
note-taking | Key
Resource
(Platform)
2 Customizatio | Studen | Tailoring | Improves Enhance Revenue
n & User t/Educ | notes to | usability of user Streams
Control ators personal | all features | experience | (Premium for
preferen and flexibility | insights)
ce Key
resource

(Platform)

Channels

(Mobile app)
3 Offline Studen | Studying | Enables Improve Revenue
Support t/Educ | without interactive accessibility | Streams
ator internet | learning and usability | (Premium
tools and Al |in pricing for
summarizati | low-connecti | offline
on offline vity access) Key
environment | Resource(PI
s atform)

Biggest Concerns

Concern

Potential Solutions

Does the MVP improve
student engagement with
lecture content compared to
traditional methods?

Metrics: Time spent reviewing notes, engagement
with Q&A, and task completion rates - obtain
analytics over larger time durations (1 or 2 months)

Scalability of Al
transcription?

Use Edge Al models where feasible,and reduce
API dependency for cost savings.

Costs of Al model API calls

Try experimenting with OLLAMA on smaller models
before moving to the API of a larger model.
Experiment with ChatGPT from their free
application with manual prompts to gain confidence
in the instructional prompting techniques.

Expansion and Rollout

Try rolling out the app to a select few courses and
students and obtain analytics on signups and
engagement.

Insights from User Testing and Analytics

We tested the following metrics by asking 10 students to use the Classmate Al app, and
collected usage data based on their interactions.

Test 1: Q&A Usage

Objective:

Identify the recurring types of questions and volume of usage to assess the value of the
Q&A feature.

Data Collected:

e Total questions asked per lecture (avg): 5.4 questions
e Participants: 10 students

e Question type categories (based on manual tagging):
Clarification of concepts: 42%
Summary/explanation requests: 33%

Related topic questions: 18%
Assignment/help-based: 7%

O O O O

Key Insight:

e The Q&A feature is highly used, with an average of over 5 questions per lecture,
showing strong engagement.

e The majority of queries are concept clarification, suggesting users rely on Classmate
Al as a real-time teaching assistant.

e There's potential to pre-populate common doubts in future versions to reduce
repetitive questions and speed up support.

Test 2: Drop-Off Analysis
Objective:
Determine when users are leaving the notes/Q&A screens and why.

Data Collected:

e Average time before exit: 2 minute 18 seconds
e Average scroll position at exit: 72%

Key Insight:

e Most users engage deeply but do not reach the end of the lecture content.
e Drop-offs after 72% may indicate:

o Summaries are too long

o Users may get what they need before finishing

o Less critical info is placed later in the notes

Actionable Next Steps:

e Introduce “Quick Summary” at the top
e Use collapsible sections or Table Of Contents - based navigation
e Explore content prioritization strategies based on user scroll heatmaps

Overall Takeaways:
e Q&A is sticky and valuable — could make it more proactive (suggested questions, hot
topics).

e Scroll-based drop-offs hint at optimization opportunities in UI/UX and content structure.

We conducted A/B testing on two different features in this sprint. For each feature, we tested
with a total of 20 students from different academic backgrounds.

Experiment Setup -

Test 1: Note Structure Layout

Objective: Determine whether paragraph-style notes or bullet-point structured notes
enhance readability and retention.

User Assignment:

e Group A (10 students): Shown paragraph-style notes
e Group B (10 students): Shown bullet-point notes with highlights

Metrics Collected:

e Time Spent on Notes Page (TNP)
e Scroll Depth (SD) (how much of the notes users read)
e Bounce Rate (BR) (how many users left immediately)

Test 2: Q&A Interface Placement

Objective: Evaluate whether an integrated Q&A panel or a separate Q&A tab leads to higher
engagement.

User Assignment:

e Group A (10 students): Q&A panel on a separate tab.

e Group B (10 students): Q&A panel embedded alongside the notes

Metrics Collected:

Quantitative Results Collected

Q&A Engagement Rate (QER) (how many users asked a question)
Response Time (RT) (time taken to receive an answer)

User Satisfaction Score (USS) (feedback from a 5-star survey)
Session Duration in Q&A (SDQ)

Metric

Group A (Paragraph Notes)

Group B (Bullet Notes)

Time Spent on Notes (TNP) [5m 32s 7m 49s (+41%)
Scroll Depth (SD) 74% 91% (+23%)
Bounce Rate (BR) 22% 11% (-50%)

Bullet-point notes outperformed paragraph notes in time spent, comprehension, and

retention.

Metric

Group A (Seperate Q&A
Tab)

Group B (Integrated Q&A)

Q&A Engagement Rate 37% 19% (-49%)
(QER)
Response Time (RT) 1m 12s 2m 45s (+137%)

User Satisfaction Score 43/5 3.7/5 (-14%)
(USS)

Session Duration (SDQ) 3m 24s 2m 10s (-36%)

Seperate Q&A panel led to significantly higher engagement and faster response times
compared to the integrated tab.

As part of our Sprint 3 user testing, we allowed students to interact with the
prototype app for Approach 1, which took a lecture recording and generated
structured notes from it. After using the prototype, students participated in interviews
and surveys to share their feedback.

Participants:

e 20 students from different disciplines (CS, Business, Psychology, Engineering).
e 5 TAs reviewed Al-generated summaries for accuracy.

Test Setup:

1. Students provided a lecture recording (20-45 minutes) from one of their
classes.

2. The Al-generated structured notes, summarizing key points, definitions, and
takeaways.

3. Students compared Al-generated notes to their own manual notes.

4. TAs evaluated Al-generated summaries for completeness and correctness.

Updated Survey Data After Prototype Testing

Survey Question Before Using | After Using the | Change
the Prototype Prototype (%)
Would you use an Al-generated 82% 91% +9%

note summarization tool?

without human validation?

Do you struggle to take notes 72% 72% No
while listening? change
Would Al-generated summaries 78% 88% +10%
help you review for exams?

Did the Al summaries reduce your | Not Asked 73% said Yes New
study time? Data
Would you prefer Al-generated 64% 85% +21%
summaries over manual notes?

Do you trust Al-generated notes 43% 58% +15%

Key Takeaways:

e User adoption increased after using the prototype—confidence in

Al-generated notes improved.

e Students preferred Al summaries for revision, especially when structured

properly.

e Trust in Al-generated notes increased (from 43% to 58%), but instructor
validation is still necessary for full trust.

TA Feedback After Reviewing Al Summaries

Evaluation Criteria

TA Rating (%)

Accuracy of Al-generated summaries

88%

Completeness (capturing all key points) 82%

Context Preservation 74%
Usefulness for students 90%
Would recommend for student use? 80% (Yes)

TA Comments:

e “The Al summaries were well-structured but missed some nuances and
examples.”

e “If students rely only on Al summaries, they might lose deeper
understanding—combining Al with instructor-verified notes would be best.”

e “The technology is promising. If | could edit and approve these summaries for my
students, | would definitely use it.”

Al Trust Verification in ClassmateAl

ClassmateAl prioritizes delivering accurate and contextually relevant Al-generated study
materials while maintaining a seamless user experience. To avoid overwhelming
students with technical details, the app does not display explicit source references
within the interface. However, to ensure the reliability and factual grounding of Al
responses, the development team rigorously reviews and audits source attributions
by modifying the Perplexity API during internal testing and evaluation phases.

Trust Verification Metrics

To measure and maintain trust, ClassmateAl employs a set of quantifiable metrics:

Metric Result Benchmark Methodology

Factual Manual verification of 100 responses
Accuracy 88% >85% against lecture transcripts

Source % of claims with perplexity’s references to

Attribution 87% >80% lecture content

Context % of responses that directly address the
Relevance 89% >85% question using context

Hallucination % of statements not supported by lecture
Rate 4% <5% material

Perplexity Sonar benchmarks

Our application utilizes Perplexity Sonar models, which have proven to be
high-performing large language models, especially in the areas of search-augmented
reasoning and factual answer generation. In recent independent evaluations, Sonar
consistently ranked at or near the top compared to leading models from Google and
OpenAl. For example, in the LM Arena Search Arena leaderboard,
Sonar-Reasoning-Pro-High achieved an Arena Score of 1136, statistically tied for first
place with Google’s Gemini-2.5-Pro-Grounding, and outperformed all of OpenAl’s web
search models. These benchmarks highlight Sonar’s strengths in factual accuracy,
answer quality, and user experience, making it a reliable choice for applications where
trust and speed are critical.

Future Testing Approaches
To further strengthen Al trust verification, we plan to implement

1. Expanded Test Dataset: Create a comprehensive set of questions with known
answers from lecture content to systematically evaluate response accuracy.

2. Comparative Model Testing: Benchmark Perplexity Sonar against other LLMs
(GPT-4, Claude) to identify relative strengths and weaknesses in educational
contexts.

3. Automated Fact-Checking: Develop algorithms to automatically verify response
claims against lecture transcripts, reducing the need for manual verification.

4. Real-Time Confidence Indicators: Implement visual indicators in the chat
interface showing confidence levels for different parts of each response.

By continuously improving our trust verification framework, ClassmateAl will maintain its
commitment to providing accurate, reliable, and trustworthy Al assistance for students.

Learning Prototype Plan

For sprint 5, the learning prototype plan will focus on delivering a working end-to-end
prototype that is tested with real users. The goal is to have a functional product that
includes the core features, gathers quantifiable user feedback, and prepares for early
adopter use cases. We also plan on creating a web-based version of the application.

Hypothesis Testing Areas

e Hypothesis 1: Students using Al-generated and instructor-validated notes will be able to
review and retain lecture content faster compared to students using traditional
handwritten notes.

e Hypothesis 2: The separate Q&A tab will result in better task completion rates and
higher engagement compared to the integrated Q&A panel.

e Hypothesis 3: Gamification elements (points, badges) will drive higher engagement in
reviewing notes and interacting with the Al-powered Q&A.

Testing Plan:

The testing should focus on how the MVP performs across different user segments and
environments.

Testing Methods:

1. Usability Testing:
o Goal: Ensure the MVP is user-friendly and intuitive.
o Method: Ask users to complete specific tasks (e.g., review notes, ask a
question in the Q&A, mark notes).
o Metrics: Task completion rate, time spent on tasks, satisfaction rating.
2. Engagement Testing:
o Goal: Measure user engagement with the notes and Q&A system.
o Method: Track usage of notes and Q&A (e.g., how often users ask
questions, how long they spend reviewing notes).
o Metrics: Engagement rate, time spent, frequency of Q&A usage.

Key Questions to Answer in Sprint 5:

1. Does the MVP improve student engagement with lecture content compared
to traditional methods?
o Metrics: Time spent reviewing notes, engagement with Q&A, and task
completion rates.

2. How does the real-time Q&A feature affect students' learning and

satisfaction?
o Metrics: Number of questions asked, accuracy of Al responses, user
feedback on Q&A helpfulness.

Future direction:

Launching the app:

Phase 1: Private Beta Launch (Weeks 1-4)

Goal: Validate real-world use and gather actionable feedback from a small, controlled
user base.

e Target Users:
o 2-3 university courses (ideally one technical, one non-technical)
o Instructors open to tech adoption + their enrolled students
e Deliverables:
o End-to-end working app (lecture upload — Al summary — instructor
review — student Q&A)
o Instructor dashboard to publish validated notes
o Usage analytics and bug reporting
e Feedback Loop:
o Weekly check-ins with pilot users
o Surveys and analytics to assess satisfaction, trust in Al summaries, and
engagement rates

Phase 2: Campus-Wide Pilot (Weeks 5-8)
Goal: Test scalability and broader user dynamics.

e Partnership:
o Collaborate with university teaching & learning centers or CS/EdTech
departments
o Offer onboarding sessions or TA-facilitated demos
e Support:
o Setup onboarding docs and in-app tooltips
o Provide live email/Discord support

Phase 3: Public Launch (Weeks 9-12)
Goal: Open app to broader users (multi-institution or public use).

e Marketing Channels:
o Launch on Product Hunt, Reddit EdTech groups, LinkedIn, and university
forums
o Publish blog posts/case studies from beta courses
e Freemium Model Rollout:
o Free tier: core Al summaries and Q&A
o Premium tier: advanced Al models for Al summaries and Q&A

