
LensDB: Compressed Learned Indexes for Traffic Video Analysis
Raj Shah

rajshah@gatech.edu
Georgia Institute of Technology

Atlanta, Georgia, USA

Karvy Mohnot
kmohnot3@gatech.edu

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract
Iterative video analytics incurs high storage and compute costs for
city-scale surveillance. We propose a compressed learned index
that decouples ingestion from inference by replacing per-frame
object detection with a sparse embedding collection. Our pipeline
integrates heuristic keyframe selection (Frame Difference, SSIM,
MOG2, Flow) to filter temporal redundancy, followed by semantic
encoding via a CLIP embedder and a lightweight MLP for count esti-
mation. Crucially, by shifting exploratory queries to the latent space,
we bypass the latency of video decoding from network-attached
storage (NFS, which is typical for storing large amounts of video
data), enabling quick preliminary analysis without video decod-
ing cost. Evaluation on the VIRAT dataset demonstrates a 99.991%
reduction in storage and sub-second query latency compared to
exhaustive YOLO baselines. While the system achieves high F1
(0.963) for event detection (𝑇 ≥ 1), we identify significant precision
trade-offs in fine-grained counting (𝑇 > 2).

Keywords
Compressed video indexes, Keyframe selection, CLIP embeddings,
FAISS retrieval, Traffic analytics, Approximate query processing,
Low-latency inference
ACM Reference Format:
Raj Shah and Karvy Mohnot. 2025. LensDB: Compressed Learned Indexes
for Traffic Video Analysis. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation email (CS 8803 LRV). ACM,
New York, NY, USA, 7 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Traffic and surveillance cameras generate vast continuous video
streams, creating significant challenges for large-scale storage, pro-
cessing, and query responsiveness. Even a single fixed camera can
produce tens of gigabytes per day, and modern video analytics
pipelines often require computing deep visual features for every
frame, resulting in prohibitive compute and storage overheads.
Existing systems such as BlazeIt [4], FiGO [2], VIVA [8], and No-
Scope [5] accelerate specific query types, but they still rely on dense
per-frame features or query-specific retraining, which limits their
ability to scale to city-wide deployments with strict latency and
storage budgets.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CS 8803 LRV, Atlanta, GA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

A central question therefore arises: Can we build a video index
that stores only a compact latent representation while still sup-
porting accurate, low-latency queries? In particular, traffic-focused
analytics workloads, such as retrieving frames where the number of
visible cars exceeds a threshold, should have sub-second response
times and must operate within tight storage constraints. Achieving
this requires rethinking the traditional “process all frames” para-
digm.

In this project, we design and evaluate a compressed learned
index that replaces dense, frame-by-frame processing with a combi-
nation of (1) keyframe selection, (2) CLIP-based visual embeddings,
(3) FAISS similarity search, and (4) a lightweight MLP count predic-
tor. Keyframe selection algorithms such as frame-difference, SSIM
drop, MOG2 foreground estimation, and optical flow reduce 90–99%
of redundant frames before embedding, dramatically lowering com-
pute and storage requirements. The resulting index persists only
the CLIP embeddings of selected frames and supports fast semantic
retrieval using a text query such as “car”.

To approximate car-count queries, we train a compact MLP on
top of CLIP embeddings to predict frame-level vehicle counts. This
predictor, pre-trained on COCO and fine-tuned on VIRAT, acts as a
selective post-filter to improve precision without sacrificing recall.
Ground-truth labels are obtained via a YOLO11x detector, which
serves as a proxy oracle for evaluation.

Our findings show that the proposed index can compress a 1.4
GB video into 1.5 MB of embeddings while still supporting fast,
approximate car-count queries. This storage requirement could fur-
ther be reduced to 132kb by using keyframe detection techniques
to remove temporal duplications. The retrieval of FAISS on CLIP
embeddings achieves high recall, and the MLP count-predictor
significantly improves precision at low thresholds. Although chal-
lenges remain—particularly for high car-count cases and temporal
understanding—our results demonstrate that compact learned in-
dexes are a promising direction for scaling real-time video analytics
in resource-constrained environments.

2 Background
This section reviews the foundational concepts underlying our
compressed learned index for traffic video analysis. We describe
the keyframe selection techniques used to reduce redundancy, the
embedding and retrieval models used to construct the index, and
the dataset employed for evaluation.

2.1 Keyframe Selection
Traffic video streams contain substantial temporal redundancy,
as consecutive frames often differ only minimally. Processing or
embedding every frame significantly increases computational load
and storage requirements. To address this, we evaluate several

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

CS 8803 LRV, December 05, 2025, Atlanta, GA Raj Shah and Karvy Mohnot

lightweight techniques that identify informative or eventful frames
while discarding redundant ones.

2.1.1 SSIM-Based Keyframe Detection. Structural Similarity (SSIM)
is a perceptual metric that compares two images using three com-
ponents: luminance, contrast, and structural patterns. Let 𝐼𝑡 denote
the video frame at time 𝑡 and 𝐼𝑡−1 the previous frame. We compute
the SSIM drop

ΔSSIM (𝑡) = 1 − SSIM(𝐼𝑡 , 𝐼𝑡−1),
where SSIM(𝐼𝑡 , 𝐼𝑡−1) ∈ [0, 1] measures their perceptual simi-

larity. A value close to 1 indicates that the two frames are nearly
identical, while values closer to 0 correspond to substantial changes
in illumination, structure, or object layout.

Because SSIM incorporates perceptual structure rather than raw
pixel differences, a large ΔSSIM (𝑡) typically indicates a meaningful
scene change, such as a vehicle entering or leaving the frame or a
notable shift in lighting.

2.1.2 Frame-Difference Keyframe Detection. The frame-difference
method identifies keyframes by measuring the raw pixel change
between consecutive frames. Let 𝐼𝑡 and 𝐼𝑡−1 denote two grayscale
video frames at times 𝑡 and 𝑡 − 1, respectively. We compute the
mean absolute difference

𝐷 (𝑡) = 1
𝐻𝑊

𝑊∑︁
𝑥=1

𝐻∑︁
𝑦=1

|𝐼𝑡 (𝑥,𝑦) − 𝐼𝑡−1 (𝑥,𝑦) | ,

where 𝐻 and𝑊 are the height and width of the frame. A large
value of 𝐷 (𝑡) indicates substantial pixel-level change, typically
caused by an object entering or leaving the scene or by abrupt
illumination variation.

2.1.3 MOG2 Background Subtraction. The MOG2 method detects
keyframes by identifying regions of foreground motion. It main-
tains a statistical background model for each pixel and labels pixels
as foreground when their intensity no longer fits the learned back-
ground distribution. Applying MOG2 to each frame produces a
binary mask that highlights moving objects such as vehicles or
pedestrians.

To measure activity, we compute the fraction of pixels marked
as foreground. Frames with a high proportion of moving pixels are
interpreted as containing meaningful events and are selected as
keyframes. This approach works well in traffic scenes where object
motion is the primary signal of interest.

2.1.4 Optical Flow. Optical flow estimates the apparent motion of
pixels between consecutive frames. Let 𝐼𝑡 and 𝐼𝑡−1 denote frames at
times 𝑡 and 𝑡 −1. Using dense Farnebäck flow, we compute a motion
field (𝑢𝑡 (𝑥,𝑦), 𝑣𝑡 (𝑥,𝑦)) where 𝑢𝑡 and 𝑣𝑡 represent horizontal and
vertical motion at pixel (𝑥,𝑦).

From this field, we derive a motion-magnitude score

𝐹flow (𝑡) =
1

𝐻𝑊

𝑊∑︁
𝑥=1

𝐻∑︁
𝑦=1

√︁
𝑢𝑡 (𝑥,𝑦)2 + 𝑣𝑡 (𝑥,𝑦)2,

which measures the average amount of motion between 𝐼𝑡 and
𝐼𝑡−1. Large values of 𝐹flow (𝑡) typically indicate meaningful activity
such as vehicles accelerating, turning, or entering the scene.

Unlike frame-difference methods that only capture pixel-level
intensity changes, optical flow captures directional and continuous
motion patterns. This makes it particularly useful for identifying
subtle events like slow-moving vehicles, gradual traffic buildup, or
partial occlusions that may not cause large structural or intensity
changes.

2.2 CLIP Embeddings
CLIP (Contrastive Language-Image Pretraining) is a multimodal
representation model trained on large image-text datasets. It learns
to project images and natural-language descriptions into a shared
embedding space, where semantically related image and text pairs
lie close together. The model consists of two encoders: an image
encoder (such as ViT-B/32) that maps an input image to a fixed-
dimensional vector, and a text encoder that produces a correspond-
ing embedding for a textual prompt.

2.3 FAISS Similarity Search
FAISS (Facebook AI Similarity Search) is a library designed for
efficient similarity search and clustering over large collections of
high-dimensional vectors. It provides implementations of both ex-
act and approximate nearest neighbor (ANN) search, supporting
a variety of index structures such as flat L2 search, inverted-file
systems, and graph-based methods like HNSW.

2.4 MLP Count Predictor
A Multilayer Perceptron (MLP) is a feed-forward neural network
composed of one or more fully connected layers with nonlinear
activation functions. Given an input vector, each layer performs
an affine transformation followed by a nonlinearity, allowing the
network to model complex, nonlinear relationships between inputs
and outputs.

2.5 VIRAT Dataset
The VIRAT dataset is a large-scale video benchmark designed for
research on surveillance, activity recognition, and scene understand-
ing. It contains outdoor recordings captured from fixed cameras in
diverse environments such as parking lots, driveways, and build-
ing entrances. The videos exhibit real-world challenges including
varying illumination, occlusions, and heterogeneous vehicle and
pedestrian activity.

3 Design
We propose LensDB, a compressed learned index designed to de-
couple the high storage and compute cost of video ingestion from
the latency requirements of interactive querying. As illustrated
in Figure 1, the system architecture is bifurcated into an offline
Ingestion Pipeline and an online Inference Pipeline. This separation
allows us to shift the burden of frame-level analysis to the inges-
tion phase—performed once per video—while enabling sub-second
latency for subsequent exploratory queries.

LensDB: Compressed Learned Indexes for Traffic Video Analysis CS 8803 LRV, December 05, 2025, Atlanta, GA

Figure 1: System Architecture of LensDB. The Ingestion Pipeline (top) transforms raw video into a sparse index by filtering
redundant frames via statistical heuristics and encoding keyframes into CLIP embeddings. The Inference Pipeline (bottom)
executes approximate queries by performing similarity search in the latent space and refining results using a lightweight MLP
count predictor trained on proxy ground truth.

3.1 Ingestion Pipeline
The ingestion pipeline is responsible for reducing the raw video
stream into a compact, searchable latent representation. This pro-
cess involves four sequential stages: sampling, heuristic filtering,
semantic embedding, and indexing.

3.1.1 Frame Sampling and Pre-processing. The system ingests video
streams at a baseline sampling rate of 1 FPS. While surveillance
video is typically recorded at 30 FPS, traffic analytics for congestion
or occupancy rarely requires millisecond-level resolution. Down-
sampling to 1 FPS acts as the first layer of data reduction. Sampled
frames are resized to 224 × 224 pixels to match the input resolution
requirements of the downstream vision encoders.

3.1.2 Heuristic Keyframe Selection. To further compress the data,
we employ a heuristic pre-selector to filter temporal redundancy.
In surveillance footage, vast segments often contain static back-
grounds or negligible motion. We implement and evaluate four
statistical selectors: Frame Difference, Structural Similarity (SSIM),
Background Subtraction (MOG2), and Optical Flow.

Each selector calculates a novelty score 𝑆𝑡 for the current frame
𝑡 . To handle signal noise, we apply an Exponential Moving Average
(EMA) to 𝑆𝑡 . A frame is selected as a keyframe only if its smoothed
score exceeds an adaptive threshold defined by the Median Abso-
lute Deviation (MAD) of the recent history window. Furthermore,
to prevent indefinite gaps in the index during long static periods,
we enforce a "windowed keep" policy, guaranteeing at least one

keyframe is retained every fixed window (e.g., 150 seconds) regard-
less of the novelty score. This step reduces the data volume by upto
96% before any deep learning inference occurs.

3.1.3 Semantic Embedding. Retained keyframes are passed through
the CLIP (ViT-B/32) image encoder. Unlike traditional object de-
tectors that output discrete bounding boxes and class labels, CLIP
produces a 512-dimensional continuous semantic vector. This vec-
tor captures the global context of the scene (e.g., “parking lot,”
“congestion,” “empty street”) in a zero-shot manner. The embed-
dings are 𝐿2-normalized to facilitate cosine similarity search in the
subsequent indexing stage.

3.1.4 Index Construction. We utilize FAISS to construct a Flat L2
index containing the normalized embeddings of all keyframes. Cru-
cially, the index is paired with a lightweight metadata map. This
map associates each indexed keyframe with the specific time range
it represents (i.e., the timestamps of the redundant frames that
were dropped). This allows the system to reconstruct the temporal
duration of events during retrieval, despite the lossy compression.

3.1.5 Proxy Ground Truth Generation. To facilitate the training of
our count predictor (described below), we generate ground-truth
labels using a YOLO11x object detector. This detector runs on the
raw frames during a one-time offline pass, acting as a “proxy oracle”
to label car and person counts. These labels are used solely for
supervising the MLP and evaluating system recall; they are not
generated during runtime queries.

CS 8803 LRV, December 05, 2025, Atlanta, GA Raj Shah and Karvy Mohnot

3.2 Inference Pipeline
The inference pipeline enables users to perform count-based queries
(e.g., “Find frames with ≥ 5 cars”) without accessing or decoding
the raw video data from disk.

3.2.1 Latent Similarity Search (Coarse Filter). A user’s text query
is encoded using CLIP’s text encoder into the shared multimodal
embedding space. We perform a nearest neighbor search using the
FAISS index to retrieve the top-𝑘 most similar keyframe embeddings.
This step acts as a coarse filter, leveraging CLIP’s language-image
alignment to rapidly identify frames that are semantically relevant
to the query object (e.g., isolating frames containing vehicles from
those containing only empty pavement).

3.2.2 MLP Count Prediction (Fine Filter). While CLIP captures se-
mantic presence, it struggles to encode precise numerosity (e.g.,
distinguishing 5 cars from 10 cars). To resolve this, the retrieved
embeddings are passed through a lightweight Multi-Layer Percep-
tron (MLP). The MLP architecture consists of a sequence of fully
connected layers (Input 512 → Hidden Layers → Scalar Output)
with ReLU activations and dropout for regularization. It maps the
frozen, global semantic vector from CLIP to a scalar value repre-
senting the predicted object count. This allows LensDB to support
complex predicates (e.g., 𝐶𝑜𝑢𝑛𝑡 ≥ 𝑇) that standard semantic search
cannot handle natively.

3.2.3 Temporal Expansion. Upon identifying positive keyframes
via theMLP, the system queries themetadatamap to retrieve the full
set of timestamps associated with each keyframe. This effectively
“decompresses” the result, presenting the user with the complete
time windows where the event likely occurred, rather than just the
sparse keyframes.

3.3 Training Strategy
The count predictor is trained using a two-stage transfer learning
approach to mitigate data scarcity and domain shift.

Stage 1: COCO Pre-training. We first train the MLP on the
COCO dataset. Since COCO contains diverse images of common
objects (cars, people), this stage teaches the MLP to extract general
density signals from CLIP embeddings, effectively learning “what a
count looks like” in the latent space.

Stage 2: VIRAT Fine-tuning.We subsequently fine-tune the
model on a 50% split of the VIRAT subset we used for this project.
This adapts the predictor to the specific camera perspectives, light-
ing conditions, and object scales typical of the target surveillance
environment. This hybrid approach significantly outperforms train-
ing on limited video data alone.

4 Evaluation
We evaluate LensDB along three dimensions: (1) retrieval quality for
count-based queries, (2) storage savings from keyframe selection,
and (3) ingestion and query latency. We compare three families of
methods:

• YOLO: running YOLOv11m on every frame at 1fps.
• All-Embeddings: embedding every sampled frame with
CLIP and applying the MLP count predictor (the “Full Em-
bedder” in figures).

Figure 2: Recall vs. Threshold. Recall as a function of the
count threshold 𝑇 for the YOLO 11m, All-Embeddings, and
four keyframe-based variants.

Figure 3: F1-score vs. Threshold. F1-score for count predi-
cates 𝐶𝑜𝑢𝑛𝑡 ≥ 𝑇 across methods. All-Embeddings provides
the highest overall F1, while keyframe variants remain com-
petitive at low thresholds.

• Keyframe Variants: four LensDB configurations that apply
Frame Difference, SSIM, Optical Flow, or MOG2 to select
keyframes prior to embedding.

Unless otherwise noted, we report metrics over a subset of 5
videos from VIRAT dataset sampled at 1 FPS and evaluate count
predicates of the form “number of cars ≥ 𝑇 ” for thresholds 𝑇 ∈
{0, 1, 2, 3}.

4.1 Accuracy and Compression
Figures 2 and 3 summarize retrieval quality as we increase the min-
imum count threshold. At𝑇 ≥ 1, the All-Embeddings configuration
achieves an F1-score of 0.963, comparable to the YOLO11m (0.915)
while operating entirely in the latent space. As 𝑇 increases, recall

LensDB: Compressed Learned Indexes for Traffic Video Analysis CS 8803 LRV, December 05, 2025, Atlanta, GA

Table 1: Keyframe Compression Statistics Across Selectors

Selector Total Frames Keyframes Avg Compression Space Saved

FrameDiff 2872 96 31.83× 96.70%
SSIM 2872 106 28.52× 96.30%
Flow 2872 99 30.73× 96.60%
MOG2 2872 103 29.57× 96.40%

Figure 4: Ingestion Latency per Frame. Average per-frame
ingestion latency for YOLO, All-Embeddings, and keyframe
variants (including heuristic computation and any embed-
ding performed).

and F1 decline for all methods. This loss could primarily be attrib-
uted to the under-representaiton of these classes in the training
data used for the MLP (i.e., in COCO and in the videos used for
fine-tuning MLP).

The keyframe variants follow a different trade-off. For presence-
style queries (𝑇 ≥ 0) and low thresholds (𝑇 ≥ 1), Frame Differ-
ence, SSIM, Flow, and MOG2 all track the All-Embeddings curve
reasonably closely, indicating that most frames satisfying these
predicates are covered by the selected keyframes. As thresholds
increase (𝑇 ≥ 2), their recall and F1 decrease more noticeably. This
behavior reflects the design goal: aggressive temporal filtering re-
moves many visually similar frames, so a subset of high-count
frames with limited motion or subtle appearance changes are no
longer indexed. For applications where high-count events are rare
but important, this trade-off may or may not be acceptable; for
workloads dominated by 𝑇 ∈ {0, 1}, the loss is modest.

Table 1 quantifies the storage benefit of these choices. All four se-
lectors achieve between 28× and 32× compression relative to stor-
ing embeddings for every frame, with over 96% of potential embed-
dings removed. In practical terms, a 1.4 GB video that yields 2,872
sampled frames can be represented using only 96–106 keyframe em-
beddings, reducing both index size and downstream FAISS search
cost. The keyframe variants therefore span a large portion of the
accuracy–storage Pareto frontier: they give up some recall at higher
thresholds in exchange for a two-order-of-magnitude reduction in
stored vectors.

Figure 5: YOLO Cost Breakdown. Most of the per-frame cost
in the YOLO11m baseline comes from decoding video from
NFS, with detector inference adding additional overhead.

Figure 6: LensDB Cost Breakdown. For embedding-based
methods, ingestion time is dominated by MLP decoding and
inference (≈4.5ms); FAISS search contributes a negligible
fraction (≈0.06ms).

4.2 Latency and Overhead
Figure 4 reports end-to-end ingestion latency. The YOLO11m is the
slowest configuration, averaging 1809.4ms per frame. As shown
in Figure 5, this cost is dominated by decoding video from NFS,
with detector inference adding additional delay. This confirms that
running a full detector over all frames is impractical for interactive
workloads or large-scale analytics.

The All-Embeddings configuration reduces ingestion latency to
43.9ms per frame, a ∼ 41× speedup over the YOLO baseline. Micro-
benchmarks in Figure 6 indicates that MLP inference accounts for
roughly 4.5ms, while FAISS index operations add only 0.06ms.
Once embeddings are materialized, query-time costs are dominated
by the MLP and are effectively independent of whether we index
all frames or a small subset.

CS 8803 LRV, December 05, 2025, Atlanta, GA Raj Shah and Karvy Mohnot

The keyframe variants introduce an additional dimension to this
trade-off. When run over all frames, the CPU-side computation
required for SSIM, Flow, or MOG2 can exceed the benefits of not
embedding all the frames on the GPU. However, these heuristics
are applied only once during ingestion, and for use cases where
storage is a primary constraint, their cost can be amortized over
many subsequent queries. At higher thresholds (𝑇 ≥ 1), the variants
generate far fewer embeddings, and their effective per-frame cost
drops because the CLIP+MLP path is invoked only on selected
keyframes.

Overall, the three families of methods occupy distinct operating
points: YOLO provides the strongest supervision at the highest
cost; All-Embeddings offers near-oracle quality with two orders
of magnitude lower latency; and the keyframe variants further
reduce storage by nearly 30× while preserving most of the utility
for low-threshold, presence-style queries.

5 Relevant Work
5.1 Video Query Acceleration Systems
Several systems aim to reduce the cost of querying long video
streams. BlazeIt [4] accelerates aggregate queries by training proxy
models that filter candidate frames before invoking heavyweight
detectors. NoScope [5] similarly uses specialized models to rapidly
answer binary predicates such as object presence. FiGO [2] and
VIVA [8] extend these ideas with optimized pipelines and bench-
mark frameworks. While these approaches achieve substantial
speedups, they often require per-query supervision,multiple learned
models, or dense feature computation. In contrast, our system relies
on lightweight keyframe selection and general-purpose embeddings
rather than training task-specific proxies.

5.2 Semantic Embedding Models
Multimodal embeddingmodels such as CLIP [7] learn joint represen-
tations of text and images using contrastive training on large-scale
datasets. These models enable zero-shot classification and semantic
similarity search without domain-specific supervision. Such repre-
sentations have been widely adopted for retrieval, indexing, and
dataset exploration. Our work leverages CLIP as a universal visual
encoding mechanism, allowing text queries to be matched directly
against keyframe embeddings.

5.3 Nearest Neighbor Search
Efficient retrieval of high-dimensional vectors has been heavily
studied in the context of large-scale machine learning and rec-
ommendation systems. FAISS [3] provides optimized implementa-
tions of exact and approximate nearest neighbor search, including
inverted-file indexes, product quantization, and GPU-accelerated
search. These tools form the basis for scalable vector search systems.
Our system employs FAISS to enable fast similarity search over
CLIP embeddings corresponding to selected keyframes.

5.4 Temporal Redundancy and Keyframe
Methods

Classical video-processing techniques exploit temporal redundancy
to reduce per-frame computation. Frame differencing, optical flow

(e.g., Farnebäck flow [1]), and background subtraction (MOG2 [9])
identify frames containing significant visual or motion changes.
Thesemethods have beenwidely used in video compression, surveil-
lance, and streaming analytics. Our work incorporates these tech-
niques as alternative keyframe selectors to study how motion- and
appearance-based heuristics influence retrieval effectiveness. The
VIRAT dataset [6], a standard benchmark for surveillance video
analysis, provides the long, continuous sequences used in our eval-
uation.

6 Limitations and Future Work
While our prototype demonstrates that lightweight keyframe selec-
tion and embedding-based retrieval can significantly reduce storage
and computation, several limitations remain.

First, the quality of retrieval is constrained by the semantic res-
olution of CLIP embeddings. CLIP does not encode fine-grained
quantitative attributes such as object counts or precise spatial re-
lationships, which limits its ability to answer queries requiring
numerical accuracy. Incorporating specialized counting models or
region-level embeddings is a potential extension.

Second, our keyframe selectors rely on simple heuristics based
on frame differences, motion magnitude, or background subtrac-
tion. These methods can fail in scenes with low motion, gradual
lighting changes, or persistent occlusions. A promising direction is
to explore learning-based or adaptive thresholding techniques that
adjust sensitivity based on scene dynamics.

Third, retrieval performance depends on the density and distri-
bution of selected keyframes. Sparse sampling may miss short-lived
events, while aggressive sampling reduces the benefits of com-
pression. Future work could consider dynamic sampling policies
that optimize keyframe density based on query patterns or content
characteristics.

Finally, our evaluation focuses on a single dataset and a limited
set of queries. Broader experimentation across diverse environ-
ments, query types, and embedding models would strengthen the
generality of our findings. An additional avenue is to integrate
temporal reasoning or sequence-level embeddings to better capture
activity context beyond individual frames.

7 Conclusion
This work presents a lightweight pipeline for video retrieval that
combines simple keyframe selection techniqueswith general-purpose
visual embeddings to reduce storage and computation while sup-
porting semantic, text-driven queries. By evaluatingmultiplemotion-
and appearance-based keyframe selectors and indexing the result-
ing frames using CLIP and FAISS, we show that substantial com-
pression is achievable with limited degradation in retrieval quality.
Our results highlight the trade-off between keyframe density and
semantic recall, as well as the complementary strengths of different
selectors across varied scene conditions.

More broadly, our approach demonstrates that effective video
exploration does not require dense frame processing or task-specific
learned models. Instead, a small number of representative frames,
paired with strong pre-trained embeddings, can offer a practical and
scalable alternative for interactive video analytics. We hope these

LensDB: Compressed Learned Indexes for Traffic Video Analysis CS 8803 LRV, December 05, 2025, Atlanta, GA

findings motivate further work on lightweight, embedding-centric
pipelines for large-scale video systems.

Division Of Work
Karvy led the initial analysis of CLIP embeddings (including PCA-
based exploration) and designed and implemented the keyframe
selection methods, evaluating multiple heuristic detectors (Frame
Difference, SSIM, MOG2, and Optical Flow). Raj implemented the
end-to-end ingestion and inference pipelines, including the YOLO-
based oracle runs and the CLIP+MLP training pipeline for count
prediction. Both authors jointly integrated the keyframe detectors
into the full LensDB pipeline, conducted experimental analysis on
PACE, and collaborated closely on project scoping, system design,
and writing of the report.

Generative AI was used to gain familiarity with new ideas and
exploring the literature. We used generative AI tools for editing
and language suggestions; all technical design and analysis are our
own.

References
[1] Gunnar Farnebäck. 2003. Two-Frame Motion Estimation Based on Polynomial

Expansion. In Proceedings of the Scandinavian Conference on Image Analysis (SCIA).

Springer, 363–370.
[2] Kevin Hsieh, Yale Song, Balaji Vijayaraghavan, and Shivaram Venkataraman. 2018.

FiGO: Fast Inference for Object Queries in Video Analytics. In Proceedings of the
ACM Symposium on Cloud Computing. 1–15.

[3] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale Similarity
Search with GPUs. IEEE Transactions on Big Data (2019).

[4] Daniel Kang, Peter Bailis, and Matei Zaharia. 2020. BlazeIt: Optimizing Declarative
Aggregation and Limit Queries for Neural Network-based Video Analytics. In
Proceedings of the VLDB Endowment, Vol. 13. 533–546.

[5] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.
NoScope: Optimizing Neural Network Queries over Video at Scale. In Proceedings
of the VLDB Endowment, Vol. 10. 1586–1597.

[6] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jonggun Lee, Sandip Mukherjee, JK Aggarwal, Hyungtae Lee, and Larry Davis.
2011. A Large-scale Benchmark Dataset for Event Recognition in Surveillance
Video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE, 3153–3160.

[7] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, et al. 2021. Learning
Transferable Visual Models From Natural Language Supervision. In Proceedings of
the International Conference on Machine Learning (ICML).

[8] Deva Ramanan, Oncel Tuzel, and Pedro Felzenszwalb. 2011. VIVA: A Video
Analytics Benchmark. In 2011 IEEE Conference on Computer Vision Workshops
(ICCV Workshops). IEEE, 212–219.

[9] Zoran Zivkovic. 2004. Improved Adaptive Gaussian Mixture Model for Back-
ground Subtraction. In Proceedings of the 17th International Conference on Pattern
Recognition (ICPR), Vol. 2. IEEE, 28–31.

	Abstract
	1 Introduction
	2 Background
	2.1 Keyframe Selection
	2.2 CLIP Embeddings
	2.3 FAISS Similarity Search
	2.4 MLP Count Predictor
	2.5 VIRAT Dataset

	3 Design
	3.1 Ingestion Pipeline
	3.2 Inference Pipeline
	3.3 Training Strategy

	4 Evaluation
	4.1 Accuracy and Compression
	4.2 Latency and Overhead

	5 Relevant Work
	5.1 Video Query Acceleration Systems
	5.2 Semantic Embedding Models
	5.3 Nearest Neighbor Search
	5.4 Temporal Redundancy and Keyframe Methods

	6 Limitations and Future Work
	7 Conclusion
	References

